简便制备 CdIn2S4/TiO2 异质结,用于增强太阳光高效 CO2 还原能力

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Xiaoyu Ma, Longlong Wang, Houde She, Yu Zhou, Lei Wang, Jingwei Huang, Qizhao Wang
{"title":"简便制备 CdIn2S4/TiO2 异质结,用于增强太阳光高效 CO2 还原能力","authors":"Xiaoyu Ma,&nbsp;Longlong Wang,&nbsp;Houde She,&nbsp;Yu Zhou,&nbsp;Lei Wang,&nbsp;Jingwei Huang,&nbsp;Qizhao Wang","doi":"10.1007/s11705-024-2456-7","DOIUrl":null,"url":null,"abstract":"<div><p>Photocatalytic CO<sub>2</sub> reduction is a promising solution to simultaneously provide renewable chemical fuels and address the greenhouse effect. However, designing practical photocatalysts with advanced architectures remains challenging. Herein, we report the preparation of a novel CdIn<sub>2</sub>S<sub>4</sub>/TiO<sub>2</sub> binary heterojunction via an <i>in situ</i> solvothermal approach, which exhibits superior photocatalytic activity for sunlight-driven CO<sub>2</sub> reduction. The CdIn<sub>2</sub>S<sub>4</sub>/TiO<sub>2</sub> composites exhibit significantly enhanced photocatalytic performance for CO<sub>2</sub> reduction compared to unmodified TiO<sub>2</sub>. Among them, the 3% CdIn<sub>2</sub>S<sub>4</sub>/TiO<sub>2</sub> composite has optimal CO and CH<sub>4</sub> evolution rates of 18.32 and 1.03 µmol·g<sup>−1</sup>·h<sup>−1</sup>, respectively. The yield of CO is 4.7 times higher than that of pristine TiO<sub>2</sub>. This improved photocatalytic activity of the CdIn<sub>2</sub>S<sub>4</sub>/TiO<sub>2</sub> heterostructure can be attributed to its large surface area, extended light absorption range and high separation efficiency of photogenerated electron-hole pairs, which are supported by the results of photoluminescence spectroscopy and the photoelectrochemical measurements. Moreover, the photocatalytic mechanism based on the binary CdIn<sub>2</sub>S<sub>4</sub>/TiO<sub>2</sub> heterojunction is proposed and separation process of photogenerated electron-hole pairs is discussed. In brief, we aim to provide insights into the application of TiO<sub>2</sub> in energy conversion processes through the construction of heterogeneous junctions.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 9","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile fabrication of CdIn2S4/TiO2 heterojunction for enhanced solar light efficient CO2 reduction\",\"authors\":\"Xiaoyu Ma,&nbsp;Longlong Wang,&nbsp;Houde She,&nbsp;Yu Zhou,&nbsp;Lei Wang,&nbsp;Jingwei Huang,&nbsp;Qizhao Wang\",\"doi\":\"10.1007/s11705-024-2456-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photocatalytic CO<sub>2</sub> reduction is a promising solution to simultaneously provide renewable chemical fuels and address the greenhouse effect. However, designing practical photocatalysts with advanced architectures remains challenging. Herein, we report the preparation of a novel CdIn<sub>2</sub>S<sub>4</sub>/TiO<sub>2</sub> binary heterojunction via an <i>in situ</i> solvothermal approach, which exhibits superior photocatalytic activity for sunlight-driven CO<sub>2</sub> reduction. The CdIn<sub>2</sub>S<sub>4</sub>/TiO<sub>2</sub> composites exhibit significantly enhanced photocatalytic performance for CO<sub>2</sub> reduction compared to unmodified TiO<sub>2</sub>. Among them, the 3% CdIn<sub>2</sub>S<sub>4</sub>/TiO<sub>2</sub> composite has optimal CO and CH<sub>4</sub> evolution rates of 18.32 and 1.03 µmol·g<sup>−1</sup>·h<sup>−1</sup>, respectively. The yield of CO is 4.7 times higher than that of pristine TiO<sub>2</sub>. This improved photocatalytic activity of the CdIn<sub>2</sub>S<sub>4</sub>/TiO<sub>2</sub> heterostructure can be attributed to its large surface area, extended light absorption range and high separation efficiency of photogenerated electron-hole pairs, which are supported by the results of photoluminescence spectroscopy and the photoelectrochemical measurements. Moreover, the photocatalytic mechanism based on the binary CdIn<sub>2</sub>S<sub>4</sub>/TiO<sub>2</sub> heterojunction is proposed and separation process of photogenerated electron-hole pairs is discussed. In brief, we aim to provide insights into the application of TiO<sub>2</sub> in energy conversion processes through the construction of heterogeneous junctions.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"18 9\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-024-2456-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2456-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

光催化还原二氧化碳是一种很有前景的解决方案,既能提供可再生化学燃料,又能解决温室效应问题。然而,设计具有先进结构的实用光催化剂仍然具有挑战性。在此,我们报告了通过原位溶热法制备新型 CdIn2S4/TiO2 二元异质结的情况,该异质结在太阳光驱动的二氧化碳还原中表现出卓越的光催化活性。与未改性的 TiO2 相比,CdIn2S4/TiO2 复合材料的二氧化碳还原光催化性能明显增强。其中,3% CdIn2S4/TiO2 复合材料的最佳 CO 和 CH4 演化率分别为 18.32 和 1.03 µmol-g-1-h-1。CO 的产率是原始 TiO2 的 4.7 倍。CdIn2S4/TiO2 异质结构光催化活性的提高可归因于其比表面积大、光吸收范围广和光生电子-空穴对分离效率高,这些都得到了光致发光光谱和光电化学测量结果的支持。此外,我们还提出了基于二元 CdIn2S4/TiO2 异质结的光催化机理,并讨论了光生电子-空穴对的分离过程。简而言之,我们的目标是通过构建异质结,为二氧化钛在能量转换过程中的应用提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facile fabrication of CdIn2S4/TiO2 heterojunction for enhanced solar light efficient CO2 reduction

Photocatalytic CO2 reduction is a promising solution to simultaneously provide renewable chemical fuels and address the greenhouse effect. However, designing practical photocatalysts with advanced architectures remains challenging. Herein, we report the preparation of a novel CdIn2S4/TiO2 binary heterojunction via an in situ solvothermal approach, which exhibits superior photocatalytic activity for sunlight-driven CO2 reduction. The CdIn2S4/TiO2 composites exhibit significantly enhanced photocatalytic performance for CO2 reduction compared to unmodified TiO2. Among them, the 3% CdIn2S4/TiO2 composite has optimal CO and CH4 evolution rates of 18.32 and 1.03 µmol·g−1·h−1, respectively. The yield of CO is 4.7 times higher than that of pristine TiO2. This improved photocatalytic activity of the CdIn2S4/TiO2 heterostructure can be attributed to its large surface area, extended light absorption range and high separation efficiency of photogenerated electron-hole pairs, which are supported by the results of photoluminescence spectroscopy and the photoelectrochemical measurements. Moreover, the photocatalytic mechanism based on the binary CdIn2S4/TiO2 heterojunction is proposed and separation process of photogenerated electron-hole pairs is discussed. In brief, we aim to provide insights into the application of TiO2 in energy conversion processes through the construction of heterogeneous junctions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信