Chih‐Chi Hu, Peter Jan van Leeuwen, Jeffrey L. Anderson
{"title":"大气模型中粒子流过滤器的实现","authors":"Chih‐Chi Hu, Peter Jan van Leeuwen, Jeffrey L. Anderson","doi":"10.1175/mwr-d-24-0006.1","DOIUrl":null,"url":null,"abstract":"\nThe particle flow filter (PFF) shows promise for fully nonlinear data assimilation (DA) in high dimensional systems. However, its application in atmospheric models has been relatively unexplored. In this study, we develop a new algorithm, PFF-DART, in order to conduct DA for high-dimensional atmospheric models. PFF-DART combines the PFF and the two-step ensemble filtering algorithm in the Data Assimilation Research Testbed (DART), exploiting the highly parallel structure of DART. To evaluate the performance of PFF-DART, we conduct an Observing System Simulation Experiment (OSSE) in a simplified atmospheric general circulation model, and compare the performance of PFF-DART with an existing linear and Gaussian DA method. Using the PFF-DART algorithm, we demonstrate, for the first time, the capability of the PFF to yield stable results in a year-long cycling DA OSSE. Moreover, PFF-DART retains the important ability of the PFF to improve the assimilation of nonlinear and non-Gaussian observations. Finally, we emphasize that PFF-DART is a versatile algorithm that can be integrated with numerous other non-Gaussian DA techniques. This quality makes it a promising method for further investigation within a more sophisticated numerical weather prediction model in the future.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An implementation of the particle flow filter in an atmospheric model\",\"authors\":\"Chih‐Chi Hu, Peter Jan van Leeuwen, Jeffrey L. Anderson\",\"doi\":\"10.1175/mwr-d-24-0006.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe particle flow filter (PFF) shows promise for fully nonlinear data assimilation (DA) in high dimensional systems. However, its application in atmospheric models has been relatively unexplored. In this study, we develop a new algorithm, PFF-DART, in order to conduct DA for high-dimensional atmospheric models. PFF-DART combines the PFF and the two-step ensemble filtering algorithm in the Data Assimilation Research Testbed (DART), exploiting the highly parallel structure of DART. To evaluate the performance of PFF-DART, we conduct an Observing System Simulation Experiment (OSSE) in a simplified atmospheric general circulation model, and compare the performance of PFF-DART with an existing linear and Gaussian DA method. Using the PFF-DART algorithm, we demonstrate, for the first time, the capability of the PFF to yield stable results in a year-long cycling DA OSSE. Moreover, PFF-DART retains the important ability of the PFF to improve the assimilation of nonlinear and non-Gaussian observations. Finally, we emphasize that PFF-DART is a versatile algorithm that can be integrated with numerous other non-Gaussian DA techniques. This quality makes it a promising method for further investigation within a more sophisticated numerical weather prediction model in the future.\",\"PeriodicalId\":18824,\"journal\":{\"name\":\"Monthly Weather Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Weather Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/mwr-d-24-0006.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Weather Review","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-24-0006.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
An implementation of the particle flow filter in an atmospheric model
The particle flow filter (PFF) shows promise for fully nonlinear data assimilation (DA) in high dimensional systems. However, its application in atmospheric models has been relatively unexplored. In this study, we develop a new algorithm, PFF-DART, in order to conduct DA for high-dimensional atmospheric models. PFF-DART combines the PFF and the two-step ensemble filtering algorithm in the Data Assimilation Research Testbed (DART), exploiting the highly parallel structure of DART. To evaluate the performance of PFF-DART, we conduct an Observing System Simulation Experiment (OSSE) in a simplified atmospheric general circulation model, and compare the performance of PFF-DART with an existing linear and Gaussian DA method. Using the PFF-DART algorithm, we demonstrate, for the first time, the capability of the PFF to yield stable results in a year-long cycling DA OSSE. Moreover, PFF-DART retains the important ability of the PFF to improve the assimilation of nonlinear and non-Gaussian observations. Finally, we emphasize that PFF-DART is a versatile algorithm that can be integrated with numerous other non-Gaussian DA techniques. This quality makes it a promising method for further investigation within a more sophisticated numerical weather prediction model in the future.
期刊介绍:
Monthly Weather Review (MWR) (ISSN: 0027-0644; eISSN: 1520-0493) publishes research relevant to the analysis and prediction of observed atmospheric circulations and physics, including technique development, data assimilation, model validation, and relevant case studies. This research includes numerical and data assimilation techniques that apply to the atmosphere and/or ocean environments. MWR also addresses phenomena having seasonal and subseasonal time scales.