Chih‐Chi Hu, Peter Jan van Leeuwen, Jeffrey L. Anderson
{"title":"大气模型中粒子流过滤器的实现","authors":"Chih‐Chi Hu, Peter Jan van Leeuwen, Jeffrey L. Anderson","doi":"10.1175/mwr-d-24-0006.1","DOIUrl":null,"url":null,"abstract":"\nThe particle flow filter (PFF) shows promise for fully nonlinear data assimilation (DA) in high dimensional systems. However, its application in atmospheric models has been relatively unexplored. In this study, we develop a new algorithm, PFF-DART, in order to conduct DA for high-dimensional atmospheric models. PFF-DART combines the PFF and the two-step ensemble filtering algorithm in the Data Assimilation Research Testbed (DART), exploiting the highly parallel structure of DART. To evaluate the performance of PFF-DART, we conduct an Observing System Simulation Experiment (OSSE) in a simplified atmospheric general circulation model, and compare the performance of PFF-DART with an existing linear and Gaussian DA method. Using the PFF-DART algorithm, we demonstrate, for the first time, the capability of the PFF to yield stable results in a year-long cycling DA OSSE. Moreover, PFF-DART retains the important ability of the PFF to improve the assimilation of nonlinear and non-Gaussian observations. Finally, we emphasize that PFF-DART is a versatile algorithm that can be integrated with numerous other non-Gaussian DA techniques. This quality makes it a promising method for further investigation within a more sophisticated numerical weather prediction model in the future.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 39","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An implementation of the particle flow filter in an atmospheric model\",\"authors\":\"Chih‐Chi Hu, Peter Jan van Leeuwen, Jeffrey L. Anderson\",\"doi\":\"10.1175/mwr-d-24-0006.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe particle flow filter (PFF) shows promise for fully nonlinear data assimilation (DA) in high dimensional systems. However, its application in atmospheric models has been relatively unexplored. In this study, we develop a new algorithm, PFF-DART, in order to conduct DA for high-dimensional atmospheric models. PFF-DART combines the PFF and the two-step ensemble filtering algorithm in the Data Assimilation Research Testbed (DART), exploiting the highly parallel structure of DART. To evaluate the performance of PFF-DART, we conduct an Observing System Simulation Experiment (OSSE) in a simplified atmospheric general circulation model, and compare the performance of PFF-DART with an existing linear and Gaussian DA method. Using the PFF-DART algorithm, we demonstrate, for the first time, the capability of the PFF to yield stable results in a year-long cycling DA OSSE. Moreover, PFF-DART retains the important ability of the PFF to improve the assimilation of nonlinear and non-Gaussian observations. Finally, we emphasize that PFF-DART is a versatile algorithm that can be integrated with numerous other non-Gaussian DA techniques. This quality makes it a promising method for further investigation within a more sophisticated numerical weather prediction model in the future.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" 39\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/mwr-d-24-0006.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-24-0006.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
An implementation of the particle flow filter in an atmospheric model
The particle flow filter (PFF) shows promise for fully nonlinear data assimilation (DA) in high dimensional systems. However, its application in atmospheric models has been relatively unexplored. In this study, we develop a new algorithm, PFF-DART, in order to conduct DA for high-dimensional atmospheric models. PFF-DART combines the PFF and the two-step ensemble filtering algorithm in the Data Assimilation Research Testbed (DART), exploiting the highly parallel structure of DART. To evaluate the performance of PFF-DART, we conduct an Observing System Simulation Experiment (OSSE) in a simplified atmospheric general circulation model, and compare the performance of PFF-DART with an existing linear and Gaussian DA method. Using the PFF-DART algorithm, we demonstrate, for the first time, the capability of the PFF to yield stable results in a year-long cycling DA OSSE. Moreover, PFF-DART retains the important ability of the PFF to improve the assimilation of nonlinear and non-Gaussian observations. Finally, we emphasize that PFF-DART is a versatile algorithm that can be integrated with numerous other non-Gaussian DA techniques. This quality makes it a promising method for further investigation within a more sophisticated numerical weather prediction model in the future.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.