关于黎曼假说的命题 III

Pathikrit Basu
{"title":"关于黎曼假说的命题 III","authors":"Pathikrit Basu","doi":"10.9734/ajpas/2024/v26i8634","DOIUrl":null,"url":null,"abstract":"In this paper, we consider further propositions concerning the range of possible distributions over the unit circle, for the Riemann zeta function as in prior research. We also derive some new upper bounds on the sum of norms for the tail sequence corresponding to the Riemann zeta function. We discuss some hypotheses, conditional on which, properties of concentrated distributions may be obtained. Specific sub-classes are shown of distributions that occur infinitely often along the imaginary axis.","PeriodicalId":502163,"journal":{"name":"Asian Journal of Probability and Statistics","volume":" 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Propositions Pertaining to the Riemann Hypothesis III\",\"authors\":\"Pathikrit Basu\",\"doi\":\"10.9734/ajpas/2024/v26i8634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider further propositions concerning the range of possible distributions over the unit circle, for the Riemann zeta function as in prior research. We also derive some new upper bounds on the sum of norms for the tail sequence corresponding to the Riemann zeta function. We discuss some hypotheses, conditional on which, properties of concentrated distributions may be obtained. Specific sub-classes are shown of distributions that occur infinitely often along the imaginary axis.\",\"PeriodicalId\":502163,\"journal\":{\"name\":\"Asian Journal of Probability and Statistics\",\"volume\":\" 25\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/ajpas/2024/v26i8634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ajpas/2024/v26i8634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们进一步考虑了先前研究中有关黎曼zeta函数在单位圆上可能分布范围的命题。我们还推导出了与黎曼zeta函数相对应的尾序列的规范之和的一些新上限。我们讨论了一些假设,根据这些假设可以得到集中分布的性质。我们还展示了沿虚轴无限频繁出现的分布的特定子类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Propositions Pertaining to the Riemann Hypothesis III
In this paper, we consider further propositions concerning the range of possible distributions over the unit circle, for the Riemann zeta function as in prior research. We also derive some new upper bounds on the sum of norms for the tail sequence corresponding to the Riemann zeta function. We discuss some hypotheses, conditional on which, properties of concentrated distributions may be obtained. Specific sub-classes are shown of distributions that occur infinitely often along the imaginary axis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信