了解控制各事件中 MJO 预测技能的因素

IF 4.8 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Xuan Zhou, Lu Wang, Pang-chi Hsu, Tim Li, Baoqiang Xiang
{"title":"了解控制各事件中 MJO 预测技能的因素","authors":"Xuan Zhou, Lu Wang, Pang-chi Hsu, Tim Li, Baoqiang Xiang","doi":"10.1175/jcli-d-23-0635.1","DOIUrl":null,"url":null,"abstract":"\nThe prediction skill for individual Madden-Julian Oscillation (MJO) events is highly variable, but the key factors behind this remain unclear. Using the latest hindcast results from the Subseasonal-to-Seasonal (S2S) Phase II models, this study attempts to understand the diverse prediction skill for the MJO events with an enhanced convective anomaly over the eastern Indian Ocean (IO) at the forecast start date, by investigating the preference of the prediction skill to the MJO-associated convective anomalies and low-frequency background states (LFBS). Compared to the low-skill MJO events, the high-skill events are characterized by a stronger intraseasonal convection-circulation couplet over the IO before the forecast start date, which could result in a longer zonal propagation range during the forecast period, thereby leading to a higher score for assessing the prediction skill. The difference in intraseasonal fields can further be attributed to the LFBS of IO sea surface temperature (SST) and quasi-biannual oscillation (QBO), with the high- (low-) skill events corresponding to a warmer (colder) IO and easterly (westerly) QBO phase. The physical link is that a warm IO could increase the low-level convective instability and thus amplify MJO convection over the IO, whereas an easterly QBO phase could weaken the Maritime Continent barrier effect through weakening the static stability near the tropopause, thus favoring eastward propagation of the MJO. It is also found that the combined effects of IO SST and QBO phases are more effective in influencing MJO prediction skill than individual LFBS.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Factors Controlling MJO Prediction Skill across Events\",\"authors\":\"Xuan Zhou, Lu Wang, Pang-chi Hsu, Tim Li, Baoqiang Xiang\",\"doi\":\"10.1175/jcli-d-23-0635.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe prediction skill for individual Madden-Julian Oscillation (MJO) events is highly variable, but the key factors behind this remain unclear. Using the latest hindcast results from the Subseasonal-to-Seasonal (S2S) Phase II models, this study attempts to understand the diverse prediction skill for the MJO events with an enhanced convective anomaly over the eastern Indian Ocean (IO) at the forecast start date, by investigating the preference of the prediction skill to the MJO-associated convective anomalies and low-frequency background states (LFBS). Compared to the low-skill MJO events, the high-skill events are characterized by a stronger intraseasonal convection-circulation couplet over the IO before the forecast start date, which could result in a longer zonal propagation range during the forecast period, thereby leading to a higher score for assessing the prediction skill. The difference in intraseasonal fields can further be attributed to the LFBS of IO sea surface temperature (SST) and quasi-biannual oscillation (QBO), with the high- (low-) skill events corresponding to a warmer (colder) IO and easterly (westerly) QBO phase. The physical link is that a warm IO could increase the low-level convective instability and thus amplify MJO convection over the IO, whereas an easterly QBO phase could weaken the Maritime Continent barrier effect through weakening the static stability near the tropopause, thus favoring eastward propagation of the MJO. It is also found that the combined effects of IO SST and QBO phases are more effective in influencing MJO prediction skill than individual LFBS.\",\"PeriodicalId\":15472,\"journal\":{\"name\":\"Journal of Climate\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Climate\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jcli-d-23-0635.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0635.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

个别马登-朱利安涛动(MJO)事件的预报技能差异很大,但其背后的关键因素仍不清楚。本研究利用从副季节到季节(S2S)第二阶段模式的最新后报结果,通过研究预测技能对与 MJO 相关的对流异常和低频背景状态(LFBS)的偏好,试图了解在预报开始日期东印度洋(IO)对流异常增强的 MJO 事件的不同预测技能。与低技能 MJO 事件相比,高技能事件的特点是在预报开始日期之前,IO 上有更强的季内对流-环流对偶,这可能导致预报期间有更长的带状传播范围,从而使预报技能评估得分更高。季内场的差异可进一步归因于IO海面温度(SST)和准双年度振荡(QBO)的低频序列,高(低)技能事件与较暖(较冷)的IO和偏东(偏西)的QBO相位相对应。其物理联系是,暖的IO可以增加低层对流的不稳定性,从而放大IO上的MJO对流,而偏东的QBO相位则可以通过削弱对流层顶附近的静态稳定性来削弱海上大陆屏障效应,从而有利于MJO向东传播。研究还发现,IO SST 和 QBO 相位的综合效应比单个 LFBS 对 MJO 预测技能的影响更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding the Factors Controlling MJO Prediction Skill across Events
The prediction skill for individual Madden-Julian Oscillation (MJO) events is highly variable, but the key factors behind this remain unclear. Using the latest hindcast results from the Subseasonal-to-Seasonal (S2S) Phase II models, this study attempts to understand the diverse prediction skill for the MJO events with an enhanced convective anomaly over the eastern Indian Ocean (IO) at the forecast start date, by investigating the preference of the prediction skill to the MJO-associated convective anomalies and low-frequency background states (LFBS). Compared to the low-skill MJO events, the high-skill events are characterized by a stronger intraseasonal convection-circulation couplet over the IO before the forecast start date, which could result in a longer zonal propagation range during the forecast period, thereby leading to a higher score for assessing the prediction skill. The difference in intraseasonal fields can further be attributed to the LFBS of IO sea surface temperature (SST) and quasi-biannual oscillation (QBO), with the high- (low-) skill events corresponding to a warmer (colder) IO and easterly (westerly) QBO phase. The physical link is that a warm IO could increase the low-level convective instability and thus amplify MJO convection over the IO, whereas an easterly QBO phase could weaken the Maritime Continent barrier effect through weakening the static stability near the tropopause, thus favoring eastward propagation of the MJO. It is also found that the combined effects of IO SST and QBO phases are more effective in influencing MJO prediction skill than individual LFBS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Climate
Journal of Climate 地学-气象与大气科学
CiteScore
9.30
自引率
14.30%
发文量
490
审稿时长
7.5 months
期刊介绍: The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信