研究透水里加板上混合对流边界层流动的变分法

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-07-17 DOI:10.1002/htj.23130
Chandrasekar Muthukumaran, Anitha Semmandapatti Mohankumar, Kasiviswanathan Malayampalayam Sathasivam
{"title":"研究透水里加板上混合对流边界层流动的变分法","authors":"Chandrasekar Muthukumaran,&nbsp;Anitha Semmandapatti Mohankumar,&nbsp;Kasiviswanathan Malayampalayam Sathasivam","doi":"10.1002/htj.23130","DOIUrl":null,"url":null,"abstract":"<p>The physical problem of steady state, laminar, mixed convection (<i>Ri</i>) with double-diffusive (<i>N</i>) in an electrically low conducting fluid past a semi-infinite electromagnetic (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>Q</mi>\n \n <mi>H</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>) influenced flat plate with internal uniform heat generation (<i>Q</i>) in the presence of suction/injection (<i>H</i>) by considering viscous dissipation (<i>Ec</i>), thermophoresis (<i>Nt</i>) and thermal diffusion effects (<i>Sr</i>) is mathematically modeled as a simultaneous system of nonlinear partial differential equations. To achieve the solution of the problem numerically, Gyarmati's variational principle known as the “Governing Principle of Dissipative Processes” on the basis of nonequilibrium thermodynamic processes in the theory of continua, is adopted. This research work correlates the phenomenon of fluid around submersibles/space vehicles and provides related insights. To estimate the transportation fluid fields within the boundary layer, the appropriate trial polynomials have been employed, and functionals for the integral variational principle are determined. Next, the Euler–Lagrange equations of the functionals are obtained as a system of polynomial equations involving boundary layer thicknesses of momentum, temperature, and concentration. The expressions of local shear stress, local Nusselt, and local Sherwood numbers have been derived and the effects of various physical factors involved in the problem are explored. A comparison with the previously published results in the literature is provided to confirm the validity of the solution procedure. The results depict that injection (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>H</mi>\n \n <mo>&gt;</mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n </semantics></math>) and opposing buoyancy (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n \n <mo>&lt;</mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n </semantics></math>) decrease the skin friction about 38% in sea water and 11% in ionized air when compared to impermeable plate for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>R</mi>\n \n <mi>i</mi>\n \n <mo>=</mo>\n \n <mn>0.5</mn>\n </mrow>\n </mrow>\n </semantics></math>. The aiding buoyancy (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>N</mi>\n \n <mo>&gt;</mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n </semantics></math>) plays a dominant role in heat and mass transfers, respectively, with the massive gradients of 340% and 763% in magnitude for the heavier fluid sea water flow while 47% and 3% for the lighter fluid ionized air flow when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>R</mi>\n \n <mi>i</mi>\n \n <mo>=</mo>\n \n <mn>0.5</mn>\n </mrow>\n </mrow>\n </semantics></math>. The buoyancy parameters (<i>Ri, N</i>) decrease the heat transfer, but increase the mass transfer.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4197-4224"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The variational approach to study the mixed convection boundary layer flow over a permeable Riga plate\",\"authors\":\"Chandrasekar Muthukumaran,&nbsp;Anitha Semmandapatti Mohankumar,&nbsp;Kasiviswanathan Malayampalayam Sathasivam\",\"doi\":\"10.1002/htj.23130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The physical problem of steady state, laminar, mixed convection (<i>Ri</i>) with double-diffusive (<i>N</i>) in an electrically low conducting fluid past a semi-infinite electromagnetic (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n \\n <mi>H</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>) influenced flat plate with internal uniform heat generation (<i>Q</i>) in the presence of suction/injection (<i>H</i>) by considering viscous dissipation (<i>Ec</i>), thermophoresis (<i>Nt</i>) and thermal diffusion effects (<i>Sr</i>) is mathematically modeled as a simultaneous system of nonlinear partial differential equations. To achieve the solution of the problem numerically, Gyarmati's variational principle known as the “Governing Principle of Dissipative Processes” on the basis of nonequilibrium thermodynamic processes in the theory of continua, is adopted. This research work correlates the phenomenon of fluid around submersibles/space vehicles and provides related insights. To estimate the transportation fluid fields within the boundary layer, the appropriate trial polynomials have been employed, and functionals for the integral variational principle are determined. Next, the Euler–Lagrange equations of the functionals are obtained as a system of polynomial equations involving boundary layer thicknesses of momentum, temperature, and concentration. The expressions of local shear stress, local Nusselt, and local Sherwood numbers have been derived and the effects of various physical factors involved in the problem are explored. A comparison with the previously published results in the literature is provided to confirm the validity of the solution procedure. The results depict that injection (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>H</mi>\\n \\n <mo>&gt;</mo>\\n \\n <mn>0</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>) and opposing buoyancy (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>N</mi>\\n \\n <mo>&lt;</mo>\\n \\n <mn>0</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>) decrease the skin friction about 38% in sea water and 11% in ionized air when compared to impermeable plate for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>R</mi>\\n \\n <mi>i</mi>\\n \\n <mo>=</mo>\\n \\n <mn>0.5</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>. The aiding buoyancy (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>N</mi>\\n \\n <mo>&gt;</mo>\\n \\n <mn>0</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>) plays a dominant role in heat and mass transfers, respectively, with the massive gradients of 340% and 763% in magnitude for the heavier fluid sea water flow while 47% and 3% for the lighter fluid ionized air flow when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>R</mi>\\n \\n <mi>i</mi>\\n \\n <mo>=</mo>\\n \\n <mn>0.5</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>. The buoyancy parameters (<i>Ri, N</i>) decrease the heat transfer, but increase the mass transfer.</p>\",\"PeriodicalId\":44939,\"journal\":{\"name\":\"Heat Transfer\",\"volume\":\"53 8\",\"pages\":\"4197-4224\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/htj.23130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

通过考虑粘性耗散 (Ec)、热泳 (Nt) 和热扩散效应 (Sr),将低电导流体中经过具有内部均匀发热 (Q) 的半无限电磁 () 影响平板的具有双扩散 (N) 的稳态层流混合对流 (Ri) 的物理问题数学模型化为一个同步非线性偏微分方程系统。为了实现问题的数值求解,在连续体理论中的非平衡热力学过程的基础上,采用了被称为 "耗散过程支配原理 "的 Gyarmati 变分原理。这项研究工作与潜水器/空间飞行器周围的流体现象相关联,并提供了相关见解。为了估算边界层内的运输流体场,采用了适当的试验多项式,并确定了积分变分原理的函数。接着,以涉及动量、温度和浓度的边界层厚度的多项式方程组的形式获得了函数的欧拉-拉格朗日方程。得出了局部剪应力、局部努塞尔特数和局部舍伍德数的表达式,并探讨了问题中涉及的各种物理因素的影响。与之前发表的文献结果进行了比较,以确认求解程序的有效性。结果表明,与......的不透水板相比,注入浮力()和反浮力()分别使海水中的表皮摩擦力和电离空气中的表皮摩擦力降低了约 38% 和 11%。辅助浮力()在传热和传质中起着主导作用,当......时,较重流体海水流的巨大梯度分别为 340% 和 763%,而较轻流体电离空气流的巨大梯度分别为 47% 和 3%。浮力参数(Ri、N)降低了传热,但增加了传质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The variational approach to study the mixed convection boundary layer flow over a permeable Riga plate

The physical problem of steady state, laminar, mixed convection (Ri) with double-diffusive (N) in an electrically low conducting fluid past a semi-infinite electromagnetic ( Q H ) influenced flat plate with internal uniform heat generation (Q) in the presence of suction/injection (H) by considering viscous dissipation (Ec), thermophoresis (Nt) and thermal diffusion effects (Sr) is mathematically modeled as a simultaneous system of nonlinear partial differential equations. To achieve the solution of the problem numerically, Gyarmati's variational principle known as the “Governing Principle of Dissipative Processes” on the basis of nonequilibrium thermodynamic processes in the theory of continua, is adopted. This research work correlates the phenomenon of fluid around submersibles/space vehicles and provides related insights. To estimate the transportation fluid fields within the boundary layer, the appropriate trial polynomials have been employed, and functionals for the integral variational principle are determined. Next, the Euler–Lagrange equations of the functionals are obtained as a system of polynomial equations involving boundary layer thicknesses of momentum, temperature, and concentration. The expressions of local shear stress, local Nusselt, and local Sherwood numbers have been derived and the effects of various physical factors involved in the problem are explored. A comparison with the previously published results in the literature is provided to confirm the validity of the solution procedure. The results depict that injection ( H > 0 ) and opposing buoyancy ( N < 0 ) decrease the skin friction about 38% in sea water and 11% in ionized air when compared to impermeable plate for R i = 0.5 . The aiding buoyancy ( N > 0 ) plays a dominant role in heat and mass transfers, respectively, with the massive gradients of 340% and 763% in magnitude for the heavier fluid sea water flow while 47% and 3% for the lighter fluid ionized air flow when R i = 0.5 . The buoyancy parameters (Ri, N) decrease the heat transfer, but increase the mass transfer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信