人工智能驱动的智能扫描:用于快速成分分析的综合成像和光谱分析的快速自动方法

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Pavel Potocek, Cigdem Ozsoy-Keskinbora, Philipp Müller, Thorsten Wieczorek, Maurice Peemen, Philipp Slusallek, Bert Freitag
{"title":"人工智能驱动的智能扫描:用于快速成分分析的综合成像和光谱分析的快速自动方法","authors":"Pavel Potocek,&nbsp;Cigdem Ozsoy-Keskinbora,&nbsp;Philipp Müller,&nbsp;Thorsten Wieczorek,&nbsp;Maurice Peemen,&nbsp;Philipp Slusallek,&nbsp;Bert Freitag","doi":"10.1002/aisy.202300745","DOIUrl":null,"url":null,"abstract":"<p>Nanomaterial properties and functionalities are influenced by their shape, size, and chemical composition. The importance of these parameters highlights the need for a statistically robust analysis of a large particle population, necessitating automation. This study introduces a neural network-empowered smart scan technique that achieves a relative increase in speed compared to traditional energy-dispersive X-ray spectroscopy (EDX) mapping. The main advantage is that it reduces the required dose, decreasing potential damage to the sample by avoiding unnecessary exposure. It holds potential use in other multimodal scanning transmission electron microscopy or scanning-based imaging approaches. In the first example, identifying particles in a matrix with a trained neural network reduces the acquisition time by two orders of magnitude. This acceleration enables a statistical compositional analysis of thousands of particles in less than 1 h. Similar improvements are observed for atomic resolution. The discrete positions of atoms identified by the trained network allow for selective EDX sampling at these centers, thereby identifying the atomic species of the column with much-reduced sampling. Consequently, a lower sampling dose is required, enabling mapping of more delicate materials with high lateral resolution and at a high statistical confidence interval. Even though manual training is still required, this approach greatly benefits repetitive quality control tasks.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 8","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202300745","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence-Driven Smart Scan: A Rapid, Automatic Approach for Comprehensive Imaging and Spectroscopy for Fast Compositional Analysis\",\"authors\":\"Pavel Potocek,&nbsp;Cigdem Ozsoy-Keskinbora,&nbsp;Philipp Müller,&nbsp;Thorsten Wieczorek,&nbsp;Maurice Peemen,&nbsp;Philipp Slusallek,&nbsp;Bert Freitag\",\"doi\":\"10.1002/aisy.202300745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanomaterial properties and functionalities are influenced by their shape, size, and chemical composition. The importance of these parameters highlights the need for a statistically robust analysis of a large particle population, necessitating automation. This study introduces a neural network-empowered smart scan technique that achieves a relative increase in speed compared to traditional energy-dispersive X-ray spectroscopy (EDX) mapping. The main advantage is that it reduces the required dose, decreasing potential damage to the sample by avoiding unnecessary exposure. It holds potential use in other multimodal scanning transmission electron microscopy or scanning-based imaging approaches. In the first example, identifying particles in a matrix with a trained neural network reduces the acquisition time by two orders of magnitude. This acceleration enables a statistical compositional analysis of thousands of particles in less than 1 h. Similar improvements are observed for atomic resolution. The discrete positions of atoms identified by the trained network allow for selective EDX sampling at these centers, thereby identifying the atomic species of the column with much-reduced sampling. Consequently, a lower sampling dose is required, enabling mapping of more delicate materials with high lateral resolution and at a high statistical confidence interval. Even though manual training is still required, this approach greatly benefits repetitive quality control tasks.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"6 8\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202300745\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

纳米材料的特性和功能受其形状、尺寸和化学成分的影响。这些参数的重要性凸显了对大量粒子群进行稳健统计分析的必要性,因此必须实现自动化。本研究介绍了一种神经网络驱动的智能扫描技术,与传统的能量色散 X 射线光谱(EDX)绘图相比,该技术的速度相对提高。其主要优点是减少了所需剂量,避免了不必要的曝光,从而降低了对样品的潜在损害。它在其他多模态扫描透射电子显微镜或基于扫描的成像方法中也有潜在用途。在第一个例子中,利用训练有素的神经网络识别矩阵中的颗粒可将采集时间缩短两个数量级。在原子分辨率方面也有类似的改进。通过训练有素的网络识别原子的离散位置,可以在这些中心进行选择性 EDX 取样,从而在大大减少取样的情况下识别柱中的原子种类。因此,所需的取样剂量更低,从而能够以高横向分辨率和高统计置信区间绘制更精细的材料。尽管仍需要人工培训,但这种方法对重复性质量控制任务大有裨益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial Intelligence-Driven Smart Scan: A Rapid, Automatic Approach for Comprehensive Imaging and Spectroscopy for Fast Compositional Analysis

Artificial Intelligence-Driven Smart Scan: A Rapid, Automatic Approach for Comprehensive Imaging and Spectroscopy for Fast Compositional Analysis

Nanomaterial properties and functionalities are influenced by their shape, size, and chemical composition. The importance of these parameters highlights the need for a statistically robust analysis of a large particle population, necessitating automation. This study introduces a neural network-empowered smart scan technique that achieves a relative increase in speed compared to traditional energy-dispersive X-ray spectroscopy (EDX) mapping. The main advantage is that it reduces the required dose, decreasing potential damage to the sample by avoiding unnecessary exposure. It holds potential use in other multimodal scanning transmission electron microscopy or scanning-based imaging approaches. In the first example, identifying particles in a matrix with a trained neural network reduces the acquisition time by two orders of magnitude. This acceleration enables a statistical compositional analysis of thousands of particles in less than 1 h. Similar improvements are observed for atomic resolution. The discrete positions of atoms identified by the trained network allow for selective EDX sampling at these centers, thereby identifying the atomic species of the column with much-reduced sampling. Consequently, a lower sampling dose is required, enabling mapping of more delicate materials with high lateral resolution and at a high statistical confidence interval. Even though manual training is still required, this approach greatly benefits repetitive quality control tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信