{"title":"WC-SBERT:使用 SBERT 和维基百科类别的轻度自我训练进行零镜头主题分类","authors":"Te-Yu Chi, Jyh-Shing Roger Jang","doi":"10.1145/3678183","DOIUrl":null,"url":null,"abstract":"\n In NLP (natural language processing), zero-shot topic classification requires machines to understand the contextual meanings of texts in a downstream task without using the corresponding labeled texts for training, which is highly desirable for various applications [2]. In this paper, we propose a novel approach to construct a zero-shot task-specific model called WC-SBERT with satisfactory performance. The proposed approach is highly efficient since it uses light self-training requiring target labels (target class names of downstream tasks) only, which is distinct from other research that uses both the target labels and the unlabeled texts for training. In particular, during the pre-training stage, WC-SBERT uses contrastive learning with the multiple negative ranking loss [9] to construct the pre-trained model based on the similarity between Wiki categories. For the self-training stage, online contrastive loss is utilized to reduce the distance between a target label and Wiki categories of similar Wiki pages to the label. Experimental results indicate that compared to existing self-training models, WC-SBERT achieves rapid inference on approximately 6.45 million Wiki text entries by utilizing pre-stored Wikipedia text embeddings, significantly reducing inference time per sample by a factor of 2,746 to 16,746. During the fine-tuning step, the time required for each sample is reduced by a factor of 23 to 67. Overall, the total training time shows a maximum reduction of 27.5 times across different datasets. Most importantly, our model has achieved SOTA (state-of-the-art) accuracy on two of the three commonly used datasets for evaluating zero-shot classification, namely the AG News (0.84) and Yahoo! Answers (0.64) datasets. The code for WC-SBERT is publicly available on GitHub\n \n 1\n \n , and the dataset can also be accessed on Hugging Face\n \n 2\n \n .\n","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WC-SBERT: Zero-Shot Topic Classification Using SBERT and Light Self-Training on Wikipedia Categories\",\"authors\":\"Te-Yu Chi, Jyh-Shing Roger Jang\",\"doi\":\"10.1145/3678183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In NLP (natural language processing), zero-shot topic classification requires machines to understand the contextual meanings of texts in a downstream task without using the corresponding labeled texts for training, which is highly desirable for various applications [2]. In this paper, we propose a novel approach to construct a zero-shot task-specific model called WC-SBERT with satisfactory performance. The proposed approach is highly efficient since it uses light self-training requiring target labels (target class names of downstream tasks) only, which is distinct from other research that uses both the target labels and the unlabeled texts for training. In particular, during the pre-training stage, WC-SBERT uses contrastive learning with the multiple negative ranking loss [9] to construct the pre-trained model based on the similarity between Wiki categories. For the self-training stage, online contrastive loss is utilized to reduce the distance between a target label and Wiki categories of similar Wiki pages to the label. Experimental results indicate that compared to existing self-training models, WC-SBERT achieves rapid inference on approximately 6.45 million Wiki text entries by utilizing pre-stored Wikipedia text embeddings, significantly reducing inference time per sample by a factor of 2,746 to 16,746. During the fine-tuning step, the time required for each sample is reduced by a factor of 23 to 67. Overall, the total training time shows a maximum reduction of 27.5 times across different datasets. Most importantly, our model has achieved SOTA (state-of-the-art) accuracy on two of the three commonly used datasets for evaluating zero-shot classification, namely the AG News (0.84) and Yahoo! Answers (0.64) datasets. The code for WC-SBERT is publicly available on GitHub\\n \\n 1\\n \\n , and the dataset can also be accessed on Hugging Face\\n \\n 2\\n \\n .\\n\",\"PeriodicalId\":48967,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3678183\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3678183","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
WC-SBERT: Zero-Shot Topic Classification Using SBERT and Light Self-Training on Wikipedia Categories
In NLP (natural language processing), zero-shot topic classification requires machines to understand the contextual meanings of texts in a downstream task without using the corresponding labeled texts for training, which is highly desirable for various applications [2]. In this paper, we propose a novel approach to construct a zero-shot task-specific model called WC-SBERT with satisfactory performance. The proposed approach is highly efficient since it uses light self-training requiring target labels (target class names of downstream tasks) only, which is distinct from other research that uses both the target labels and the unlabeled texts for training. In particular, during the pre-training stage, WC-SBERT uses contrastive learning with the multiple negative ranking loss [9] to construct the pre-trained model based on the similarity between Wiki categories. For the self-training stage, online contrastive loss is utilized to reduce the distance between a target label and Wiki categories of similar Wiki pages to the label. Experimental results indicate that compared to existing self-training models, WC-SBERT achieves rapid inference on approximately 6.45 million Wiki text entries by utilizing pre-stored Wikipedia text embeddings, significantly reducing inference time per sample by a factor of 2,746 to 16,746. During the fine-tuning step, the time required for each sample is reduced by a factor of 23 to 67. Overall, the total training time shows a maximum reduction of 27.5 times across different datasets. Most importantly, our model has achieved SOTA (state-of-the-art) accuracy on two of the three commonly used datasets for evaluating zero-shot classification, namely the AG News (0.84) and Yahoo! Answers (0.64) datasets. The code for WC-SBERT is publicly available on GitHub
1
, and the dataset can also be accessed on Hugging Face
2
.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.