M. O’Driscoll, Charles P. Humphrey, G. Iverson, Jared Bowden, Jane Harrison
{"title":"北卡罗来纳州达雷县地下水位上升:对沿海社区现场废水管理的影响","authors":"M. O’Driscoll, Charles P. Humphrey, G. Iverson, Jared Bowden, Jane Harrison","doi":"10.2166/wcc.2024.735","DOIUrl":null,"url":null,"abstract":"\n \n Onsite wastewater treatment systems (OWTS) are a common wastewater treatment approach in coastal communities. Vertical separation distance (VSD) requirements between the drainfield and groundwater aim to ensure aerated soils for wastewater treatment. When the VSD declines, OWTS can fail. This study evaluated groundwater response to sea level rise (SLR) and the implications for OWTS. A groundwater monitoring network (13 wells) was used to evaluate groundwater depth in Dare County, North Carolina. Groundwater levels were measured with water level meters and pressure transducers. Trends in groundwater depth and SLR were analyzed to evaluate the influence of SLR on groundwater depth. From 1984 to 2022, mean groundwater levels have risen (∼7.6 mm/year) in response to SLR. Currently, sites at <2.7 m land elevation are most likely to have groundwater depths <1 m and inadequate VSD. Based on current precipitation and NOAA intermediate SLR projections, groundwater depth projections suggest that OWTS at lower elevations are more likely to experience groundwater inundation by 2040–2060. SLR has resulted in reduced VSD causing diminished wastewater treatment capacity in low-lying areas. OWTS VSD requirements are typically static due to regulatory constraints. Future management approaches should consider adapting to rising coastal groundwater levels because of increasing wastewater contamination risks.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 2","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rising groundwater levels in Dare County, North Carolina: implications for onsite wastewater management for coastal communities\",\"authors\":\"M. O’Driscoll, Charles P. Humphrey, G. Iverson, Jared Bowden, Jane Harrison\",\"doi\":\"10.2166/wcc.2024.735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Onsite wastewater treatment systems (OWTS) are a common wastewater treatment approach in coastal communities. Vertical separation distance (VSD) requirements between the drainfield and groundwater aim to ensure aerated soils for wastewater treatment. When the VSD declines, OWTS can fail. This study evaluated groundwater response to sea level rise (SLR) and the implications for OWTS. A groundwater monitoring network (13 wells) was used to evaluate groundwater depth in Dare County, North Carolina. Groundwater levels were measured with water level meters and pressure transducers. Trends in groundwater depth and SLR were analyzed to evaluate the influence of SLR on groundwater depth. From 1984 to 2022, mean groundwater levels have risen (∼7.6 mm/year) in response to SLR. Currently, sites at <2.7 m land elevation are most likely to have groundwater depths <1 m and inadequate VSD. Based on current precipitation and NOAA intermediate SLR projections, groundwater depth projections suggest that OWTS at lower elevations are more likely to experience groundwater inundation by 2040–2060. SLR has resulted in reduced VSD causing diminished wastewater treatment capacity in low-lying areas. OWTS VSD requirements are typically static due to regulatory constraints. Future management approaches should consider adapting to rising coastal groundwater levels because of increasing wastewater contamination risks.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" 2\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2024.735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2024.735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Rising groundwater levels in Dare County, North Carolina: implications for onsite wastewater management for coastal communities
Onsite wastewater treatment systems (OWTS) are a common wastewater treatment approach in coastal communities. Vertical separation distance (VSD) requirements between the drainfield and groundwater aim to ensure aerated soils for wastewater treatment. When the VSD declines, OWTS can fail. This study evaluated groundwater response to sea level rise (SLR) and the implications for OWTS. A groundwater monitoring network (13 wells) was used to evaluate groundwater depth in Dare County, North Carolina. Groundwater levels were measured with water level meters and pressure transducers. Trends in groundwater depth and SLR were analyzed to evaluate the influence of SLR on groundwater depth. From 1984 to 2022, mean groundwater levels have risen (∼7.6 mm/year) in response to SLR. Currently, sites at <2.7 m land elevation are most likely to have groundwater depths <1 m and inadequate VSD. Based on current precipitation and NOAA intermediate SLR projections, groundwater depth projections suggest that OWTS at lower elevations are more likely to experience groundwater inundation by 2040–2060. SLR has resulted in reduced VSD causing diminished wastewater treatment capacity in low-lying areas. OWTS VSD requirements are typically static due to regulatory constraints. Future management approaches should consider adapting to rising coastal groundwater levels because of increasing wastewater contamination risks.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.