{"title":"在边缘计算中加强卸载和网络安全,实现数字孪生驱动的患者监护","authors":"Ahmed K. Jameil, Hamed Al‐Raweshidy","doi":"10.1049/wss2.12086","DOIUrl":null,"url":null,"abstract":"In healthcare, the use of digital twin (DT) technology has been recognised as essential for enhancing patient care through real‐time remote monitoring. However, concerns regarding risk prediction, task offloading, and data security have been raised due to the integration of the Internet of Things (IoT) in remote healthcare. In this study, a new method was introduced, combines edge computing with sophisticated cybersecurity solutions. A vast amount of environmental and physiological data has been gathered, allowing for thorough understanding of patients. The system included hybrid encryption, threat prediction, Merkle Tree verification, certificate‐based authentication, and secure communication. The feasibility of the proposal was evaluated by using an ESP32‐Azure IoT Kit and Azure Cloud to evaluate the system's capacity to securely send patient data to healthcare institutions and stakeholders, while simultaneously upholding data confidentiality. The system demonstrated a notable improvement in encryption speed, with 27.18%, represented as the improved efficiency and achieved storage efficiency ratio 0.673. Furthermore, the evidence from the simulations showed that the system's performance was not affected by encryption since encryption times continuously remained within a narrow range. Moreover, proactive alert of probable security risks would be detected from the predictive analytics, hence strong data integrity assurance. The results suggest the proposed system provided a proactive, personalised care approach for cybersecurity‐protected DT healthcare (DTH) high‐level modelling and simulation, enabled via IoT and cloud computing under improved threat prediction.","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing offloading with cybersecurity in edge computing for digital twin‐driven patient monitoring\",\"authors\":\"Ahmed K. Jameil, Hamed Al‐Raweshidy\",\"doi\":\"10.1049/wss2.12086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In healthcare, the use of digital twin (DT) technology has been recognised as essential for enhancing patient care through real‐time remote monitoring. However, concerns regarding risk prediction, task offloading, and data security have been raised due to the integration of the Internet of Things (IoT) in remote healthcare. In this study, a new method was introduced, combines edge computing with sophisticated cybersecurity solutions. A vast amount of environmental and physiological data has been gathered, allowing for thorough understanding of patients. The system included hybrid encryption, threat prediction, Merkle Tree verification, certificate‐based authentication, and secure communication. The feasibility of the proposal was evaluated by using an ESP32‐Azure IoT Kit and Azure Cloud to evaluate the system's capacity to securely send patient data to healthcare institutions and stakeholders, while simultaneously upholding data confidentiality. The system demonstrated a notable improvement in encryption speed, with 27.18%, represented as the improved efficiency and achieved storage efficiency ratio 0.673. Furthermore, the evidence from the simulations showed that the system's performance was not affected by encryption since encryption times continuously remained within a narrow range. Moreover, proactive alert of probable security risks would be detected from the predictive analytics, hence strong data integrity assurance. The results suggest the proposed system provided a proactive, personalised care approach for cybersecurity‐protected DT healthcare (DTH) high‐level modelling and simulation, enabled via IoT and cloud computing under improved threat prediction.\",\"PeriodicalId\":51726,\"journal\":{\"name\":\"IET Wireless Sensor Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Wireless Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/wss2.12086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/wss2.12086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Enhancing offloading with cybersecurity in edge computing for digital twin‐driven patient monitoring
In healthcare, the use of digital twin (DT) technology has been recognised as essential for enhancing patient care through real‐time remote monitoring. However, concerns regarding risk prediction, task offloading, and data security have been raised due to the integration of the Internet of Things (IoT) in remote healthcare. In this study, a new method was introduced, combines edge computing with sophisticated cybersecurity solutions. A vast amount of environmental and physiological data has been gathered, allowing for thorough understanding of patients. The system included hybrid encryption, threat prediction, Merkle Tree verification, certificate‐based authentication, and secure communication. The feasibility of the proposal was evaluated by using an ESP32‐Azure IoT Kit and Azure Cloud to evaluate the system's capacity to securely send patient data to healthcare institutions and stakeholders, while simultaneously upholding data confidentiality. The system demonstrated a notable improvement in encryption speed, with 27.18%, represented as the improved efficiency and achieved storage efficiency ratio 0.673. Furthermore, the evidence from the simulations showed that the system's performance was not affected by encryption since encryption times continuously remained within a narrow range. Moreover, proactive alert of probable security risks would be detected from the predictive analytics, hence strong data integrity assurance. The results suggest the proposed system provided a proactive, personalised care approach for cybersecurity‐protected DT healthcare (DTH) high‐level modelling and simulation, enabled via IoT and cloud computing under improved threat prediction.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.