Jun Xie, Longyin Qiao, Ziqian Liu, Xiaoyu Shi, Ping Huang
{"title":"复合绝缘体鞘芯棒界面的温度效应:分子动力学和 DFT 研究","authors":"Jun Xie, Longyin Qiao, Ziqian Liu, Xiaoyu Shi, Ping Huang","doi":"10.1088/1361-651x/ad64f2","DOIUrl":null,"url":null,"abstract":"\n The functioning condition of composite insulators is greatly influenced by the sheath-mandrel interface. In this work, the effects of temperature on the sheath-mandrel system are examined using molecular modeling, taking into account both density functional theory (DFT) and molecular dynamics (MD). The system's interfacial free volume, HOMO/LUMO, number of hydrogen bonds, bond order, center-of-mass distance, and other characteristics define its degradation mechanism. The findings demonstrate that elevated temperatures have the potential to increase the interfacial free volume, the center-of-mass distance, and significantly reduce the number of hydrogen bonds. In addition, DFT simulations show that the bonding strength and non-bonding forces between the interfaces weaken with increasing temperature.High temperatures significantly boost the reactivity of the epoxy resin and silicone rubber chains, indicating that the system's response with some intruders will be catalyzed by the temperature increase.This work looks at the temperature dependence of the sheath-core bar interface degradation from a microscopic perspective, which is important for enhancing the overall performance of composite insulators.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature effects on the sheath-core bar interface of compositeinsulators: a molecular dynamics and DFT study\",\"authors\":\"Jun Xie, Longyin Qiao, Ziqian Liu, Xiaoyu Shi, Ping Huang\",\"doi\":\"10.1088/1361-651x/ad64f2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The functioning condition of composite insulators is greatly influenced by the sheath-mandrel interface. In this work, the effects of temperature on the sheath-mandrel system are examined using molecular modeling, taking into account both density functional theory (DFT) and molecular dynamics (MD). The system's interfacial free volume, HOMO/LUMO, number of hydrogen bonds, bond order, center-of-mass distance, and other characteristics define its degradation mechanism. The findings demonstrate that elevated temperatures have the potential to increase the interfacial free volume, the center-of-mass distance, and significantly reduce the number of hydrogen bonds. In addition, DFT simulations show that the bonding strength and non-bonding forces between the interfaces weaken with increasing temperature.High temperatures significantly boost the reactivity of the epoxy resin and silicone rubber chains, indicating that the system's response with some intruders will be catalyzed by the temperature increase.This work looks at the temperature dependence of the sheath-core bar interface degradation from a microscopic perspective, which is important for enhancing the overall performance of composite insulators.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651x/ad64f2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad64f2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Temperature effects on the sheath-core bar interface of compositeinsulators: a molecular dynamics and DFT study
The functioning condition of composite insulators is greatly influenced by the sheath-mandrel interface. In this work, the effects of temperature on the sheath-mandrel system are examined using molecular modeling, taking into account both density functional theory (DFT) and molecular dynamics (MD). The system's interfacial free volume, HOMO/LUMO, number of hydrogen bonds, bond order, center-of-mass distance, and other characteristics define its degradation mechanism. The findings demonstrate that elevated temperatures have the potential to increase the interfacial free volume, the center-of-mass distance, and significantly reduce the number of hydrogen bonds. In addition, DFT simulations show that the bonding strength and non-bonding forces between the interfaces weaken with increasing temperature.High temperatures significantly boost the reactivity of the epoxy resin and silicone rubber chains, indicating that the system's response with some intruders will be catalyzed by the temperature increase.This work looks at the temperature dependence of the sheath-core bar interface degradation from a microscopic perspective, which is important for enhancing the overall performance of composite insulators.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.