Jorge Alejandro Amador Herrera, Jonathan Klein, Daoming Liu, Wojciech Palubicki, S. Pirk, D. L. Michels
{"title":"气旋生成:模拟飓风和龙卷风","authors":"Jorge Alejandro Amador Herrera, Jonathan Klein, Daoming Liu, Wojciech Palubicki, S. Pirk, D. L. Michels","doi":"10.1145/3658149","DOIUrl":null,"url":null,"abstract":"\n Cyclones are large-scale phenomena that result from complex heat and water transfer processes in the atmosphere, as well as from the interaction of multiple\n hydrometeors\n , i.e., water and ice particles. When cyclones make landfall, they are considered natural disasters and spawn dread and awe alike. We propose a physically-based approach to describe the 3D development of cyclones in a visually convincing and physically plausible manner. Our approach allows us to capture large-scale heat and water continuity, turbulent microphysical dynamics of hydrometeors, and mesoscale cyclonic processes within the planetary boundary layer. Modeling these processes enables us to simulate multiple hurricane and tornado phenomena. We evaluate our simulations quantitatively by comparing to real data from storm soundings and observations of hurricane landfall from climatology research. Additionally, qualitative comparisons to previous methods are performed to validate the different parts of our scheme. In summary, our model simulates cyclogenesis in a comprehensive way that allows us to interactively render animations of some of the most complex weather events.\n","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclogenesis: Simulating Hurricanes and Tornadoes\",\"authors\":\"Jorge Alejandro Amador Herrera, Jonathan Klein, Daoming Liu, Wojciech Palubicki, S. Pirk, D. L. Michels\",\"doi\":\"10.1145/3658149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Cyclones are large-scale phenomena that result from complex heat and water transfer processes in the atmosphere, as well as from the interaction of multiple\\n hydrometeors\\n , i.e., water and ice particles. When cyclones make landfall, they are considered natural disasters and spawn dread and awe alike. We propose a physically-based approach to describe the 3D development of cyclones in a visually convincing and physically plausible manner. Our approach allows us to capture large-scale heat and water continuity, turbulent microphysical dynamics of hydrometeors, and mesoscale cyclonic processes within the planetary boundary layer. Modeling these processes enables us to simulate multiple hurricane and tornado phenomena. We evaluate our simulations quantitatively by comparing to real data from storm soundings and observations of hurricane landfall from climatology research. Additionally, qualitative comparisons to previous methods are performed to validate the different parts of our scheme. In summary, our model simulates cyclogenesis in a comprehensive way that allows us to interactively render animations of some of the most complex weather events.\\n\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3658149\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3658149","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Cyclones are large-scale phenomena that result from complex heat and water transfer processes in the atmosphere, as well as from the interaction of multiple
hydrometeors
, i.e., water and ice particles. When cyclones make landfall, they are considered natural disasters and spawn dread and awe alike. We propose a physically-based approach to describe the 3D development of cyclones in a visually convincing and physically plausible manner. Our approach allows us to capture large-scale heat and water continuity, turbulent microphysical dynamics of hydrometeors, and mesoscale cyclonic processes within the planetary boundary layer. Modeling these processes enables us to simulate multiple hurricane and tornado phenomena. We evaluate our simulations quantitatively by comparing to real data from storm soundings and observations of hurricane landfall from climatology research. Additionally, qualitative comparisons to previous methods are performed to validate the different parts of our scheme. In summary, our model simulates cyclogenesis in a comprehensive way that allows us to interactively render animations of some of the most complex weather events.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.