使用边界体素采样进行实时路径引导

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Haolin Lu, Wesley Chang, Trevor Hedstrom, Tzu-Mao Li
{"title":"使用边界体素采样进行实时路径引导","authors":"Haolin Lu, Wesley Chang, Trevor Hedstrom, Tzu-Mao Li","doi":"10.1145/3658203","DOIUrl":null,"url":null,"abstract":"We propose a real-time path guiding method, Voxel Path Guiding (VXPG), that significantly improves fitting efficiency under limited sampling budget. Our key idea is to use a spatial irradiance voxel data structure across all shading points to guide the location of path vertices. For each frame, we first populate the voxel data structure with irradiance and geometry information. To sample from the data structure for a shading point, we need to select a voxel with high contribution to that point. To importance sample the voxels while taking visibility into consideration, we adapt techniques from offline many-lights rendering by clustering pairs of shading points and voxels. Finally, we unbiasedly sample within the selected voxel while taking the geometry inside into consideration. Our experiments show that VXPG achieves significantly lower perceptual error compared to other real-time path guiding and virtual point light methods under equal-time comparison. Furthermore, our method does not rely on temporal information, but can be used together with other temporal reuse sampling techniques such as ReSTIR to further improve sampling efficiency.","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":" July","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real-Time Path Guiding Using Bounding Voxel Sampling\",\"authors\":\"Haolin Lu, Wesley Chang, Trevor Hedstrom, Tzu-Mao Li\",\"doi\":\"10.1145/3658203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a real-time path guiding method, Voxel Path Guiding (VXPG), that significantly improves fitting efficiency under limited sampling budget. Our key idea is to use a spatial irradiance voxel data structure across all shading points to guide the location of path vertices. For each frame, we first populate the voxel data structure with irradiance and geometry information. To sample from the data structure for a shading point, we need to select a voxel with high contribution to that point. To importance sample the voxels while taking visibility into consideration, we adapt techniques from offline many-lights rendering by clustering pairs of shading points and voxels. Finally, we unbiasedly sample within the selected voxel while taking the geometry inside into consideration. Our experiments show that VXPG achieves significantly lower perceptual error compared to other real-time path guiding and virtual point light methods under equal-time comparison. Furthermore, our method does not rely on temporal information, but can be used together with other temporal reuse sampling techniques such as ReSTIR to further improve sampling efficiency.\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\" July\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3658203\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3658203","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种实时路径引导方法--体素路径引导(VXPG),它能在有限的采样预算下显著提高拟合效率。我们的主要想法是利用所有阴影点的空间辐照度体素数据结构来引导路径顶点的位置。对于每个帧,我们首先用辐照度和几何信息填充体素数据结构。要从数据结构中对某个阴影点进行采样,我们需要选择一个对该点有较大贡献的体素。为了在考虑可见度的同时对体素进行重要采样,我们采用了离线多光源渲染技术,对阴影点和体素进行聚类。最后,我们在所选体素内进行无偏采样,同时考虑到内部的几何形状。我们的实验表明,与其他实时路径引导和虚拟点光源方法相比,VXPG 在等时比较下能显著降低感知误差。此外,我们的方法并不依赖于时间信息,但可以与其他时间重用采样技术(如 ReSTIR)一起使用,进一步提高采样效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Path Guiding Using Bounding Voxel Sampling
We propose a real-time path guiding method, Voxel Path Guiding (VXPG), that significantly improves fitting efficiency under limited sampling budget. Our key idea is to use a spatial irradiance voxel data structure across all shading points to guide the location of path vertices. For each frame, we first populate the voxel data structure with irradiance and geometry information. To sample from the data structure for a shading point, we need to select a voxel with high contribution to that point. To importance sample the voxels while taking visibility into consideration, we adapt techniques from offline many-lights rendering by clustering pairs of shading points and voxels. Finally, we unbiasedly sample within the selected voxel while taking the geometry inside into consideration. Our experiments show that VXPG achieves significantly lower perceptual error compared to other real-time path guiding and virtual point light methods under equal-time comparison. Furthermore, our method does not rely on temporal information, but can be used together with other temporal reuse sampling techniques such as ReSTIR to further improve sampling efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信