漫步罗宾:与罗宾一起漫步星空边界条件

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Bailey Miller, Rohan Sawhney, Keenan Crane, Ioannis Gkioulekas
{"title":"漫步罗宾:与罗宾一起漫步星空边界条件","authors":"Bailey Miller, Rohan Sawhney, Keenan Crane, Ioannis Gkioulekas","doi":"10.1145/3658153","DOIUrl":null,"url":null,"abstract":"\n Numerous scientific and engineering applications require solutions to boundary value problems (BVPs) involving elliptic partial differential equations, such as the Laplace or Poisson equations, on geometrically intricate domains. We develop a Monte Carlo method for solving such BVPs with arbitrary first-order linear boundary conditions---Dirichlet, Neumann, and Robin. Our method directly generalizes the\n walk on stars (WoSt)\n algorithm, which previously tackled only the first two types of boundary conditions, with a few simple modifications. Unlike conventional numerical methods, WoSt does not need finite element meshing or global solves. Similar to Monte Carlo rendering, it instead computes pointwise solution estimates by simulating random walks along star-shaped regions inside the BVP domain, using efficient ray-intersection and distance queries. To ensure WoSt produces\n bounded-variance\n estimates in the presence of Robin boundary conditions, we show that it is sufficient to modify how WoSt selects the size of these star-shaped regions. Our generalized WoSt algorithm reduces estimation error by orders of magnitude relative to alternative grid-free methods such as the\n walk on boundary\n algorithm. We also develop\n bidirectional\n and\n boundary value caching\n strategies to further reduce estimation error. Our algorithm is trivial to parallelize, scales sublinearly with increasing geometric detail, and enables progressive and view-dependent evaluation.\n","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Walkin’ Robin: Walk on Stars with Robin Boundary Conditions\",\"authors\":\"Bailey Miller, Rohan Sawhney, Keenan Crane, Ioannis Gkioulekas\",\"doi\":\"10.1145/3658153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Numerous scientific and engineering applications require solutions to boundary value problems (BVPs) involving elliptic partial differential equations, such as the Laplace or Poisson equations, on geometrically intricate domains. We develop a Monte Carlo method for solving such BVPs with arbitrary first-order linear boundary conditions---Dirichlet, Neumann, and Robin. Our method directly generalizes the\\n walk on stars (WoSt)\\n algorithm, which previously tackled only the first two types of boundary conditions, with a few simple modifications. Unlike conventional numerical methods, WoSt does not need finite element meshing or global solves. Similar to Monte Carlo rendering, it instead computes pointwise solution estimates by simulating random walks along star-shaped regions inside the BVP domain, using efficient ray-intersection and distance queries. To ensure WoSt produces\\n bounded-variance\\n estimates in the presence of Robin boundary conditions, we show that it is sufficient to modify how WoSt selects the size of these star-shaped regions. Our generalized WoSt algorithm reduces estimation error by orders of magnitude relative to alternative grid-free methods such as the\\n walk on boundary\\n algorithm. We also develop\\n bidirectional\\n and\\n boundary value caching\\n strategies to further reduce estimation error. Our algorithm is trivial to parallelize, scales sublinearly with increasing geometric detail, and enables progressive and view-dependent evaluation.\\n\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3658153\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3658153","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

许多科学和工程应用都需要解决涉及椭圆偏微分方程(如拉普拉斯方程或泊松方程)的边界值问题(BVPs)。我们开发了一种蒙特卡罗方法,用于求解具有任意一阶线性边界条件(Dirichlet、Neumann 和 Robin)的此类 BVP。我们的方法直接推广了 "星上行走"(WoSt)算法,该算法以前只处理前两类边界条件,只做了一些简单的修改。与传统数值方法不同,WoSt 不需要进行有限元网格划分或全局求解。它与蒙特卡洛渲染类似,而是通过模拟沿 BVP 域内星形区域的随机行走,利用高效的射线交汇和距离查询来计算点解估计值。为了确保 WoSt 在罗宾边界条件下产生有界方差估计值,我们证明只需修改 WoSt 选择这些星形区域大小的方式即可。我们的广义 WoSt 算法与其他无网格方法(如边界行走算法)相比,将估计误差降低了几个数量级。我们还开发了双向和边界值缓存策略,以进一步减少估计误差。我们的算法易于并行化,随着几何细节的增加呈亚线性扩展,并可进行渐进式和视图依赖性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Walkin’ Robin: Walk on Stars with Robin Boundary Conditions
Numerous scientific and engineering applications require solutions to boundary value problems (BVPs) involving elliptic partial differential equations, such as the Laplace or Poisson equations, on geometrically intricate domains. We develop a Monte Carlo method for solving such BVPs with arbitrary first-order linear boundary conditions---Dirichlet, Neumann, and Robin. Our method directly generalizes the walk on stars (WoSt) algorithm, which previously tackled only the first two types of boundary conditions, with a few simple modifications. Unlike conventional numerical methods, WoSt does not need finite element meshing or global solves. Similar to Monte Carlo rendering, it instead computes pointwise solution estimates by simulating random walks along star-shaped regions inside the BVP domain, using efficient ray-intersection and distance queries. To ensure WoSt produces bounded-variance estimates in the presence of Robin boundary conditions, we show that it is sufficient to modify how WoSt selects the size of these star-shaped regions. Our generalized WoSt algorithm reduces estimation error by orders of magnitude relative to alternative grid-free methods such as the walk on boundary algorithm. We also develop bidirectional and boundary value caching strategies to further reduce estimation error. Our algorithm is trivial to parallelize, scales sublinearly with increasing geometric detail, and enables progressive and view-dependent evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信