J. Rodríguez-Quiñonez, Jorge Alejandro Valdez-Rodríguez, Moises J. Castro-Toscano, W. Flores-Fuentes, Oleg Sergiyenko
{"title":"监测地震振动引起的运动中结构的惯性方法","authors":"J. Rodríguez-Quiñonez, Jorge Alejandro Valdez-Rodríguez, Moises J. Castro-Toscano, W. Flores-Fuentes, Oleg Sergiyenko","doi":"10.3390/infrastructures9070116","DOIUrl":null,"url":null,"abstract":"This paper presents a non-invasive methodology for structural health monitoring (SHM) integrated with inertial sensors and signal conditioning techniques. The proposal uses the signal of an IMU (inertial measurement unit) tri-axial accelerometer and gyroscope to continuously measure the displacements of a structure in motion due to seismic vibrations. A system, called the “Inertial Displacement Monitoring System” or “IDMS”, is implemented to attenuate the signal error of the IMU with methodologies such as a Kalman filter to diminish the influence of white noise, a Chebyshev filter to isolate the frequency values of a seismic motion, and a correction algorithm called zero velocity observation update (ZVOB) to detect seismic vibrations and diminish the influence of external perturbances. As a result, the IDMS is a methodology developed to measure displacements when a structure is in motion due to seismic vibration and provides information to detect failures opportunely.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" 471","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inertial Methodology for the Monitoring of Structures in Motion Caused by Seismic Vibrations\",\"authors\":\"J. Rodríguez-Quiñonez, Jorge Alejandro Valdez-Rodríguez, Moises J. Castro-Toscano, W. Flores-Fuentes, Oleg Sergiyenko\",\"doi\":\"10.3390/infrastructures9070116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a non-invasive methodology for structural health monitoring (SHM) integrated with inertial sensors and signal conditioning techniques. The proposal uses the signal of an IMU (inertial measurement unit) tri-axial accelerometer and gyroscope to continuously measure the displacements of a structure in motion due to seismic vibrations. A system, called the “Inertial Displacement Monitoring System” or “IDMS”, is implemented to attenuate the signal error of the IMU with methodologies such as a Kalman filter to diminish the influence of white noise, a Chebyshev filter to isolate the frequency values of a seismic motion, and a correction algorithm called zero velocity observation update (ZVOB) to detect seismic vibrations and diminish the influence of external perturbances. As a result, the IDMS is a methodology developed to measure displacements when a structure is in motion due to seismic vibration and provides information to detect failures opportunely.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" 471\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/infrastructures9070116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/infrastructures9070116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Inertial Methodology for the Monitoring of Structures in Motion Caused by Seismic Vibrations
This paper presents a non-invasive methodology for structural health monitoring (SHM) integrated with inertial sensors and signal conditioning techniques. The proposal uses the signal of an IMU (inertial measurement unit) tri-axial accelerometer and gyroscope to continuously measure the displacements of a structure in motion due to seismic vibrations. A system, called the “Inertial Displacement Monitoring System” or “IDMS”, is implemented to attenuate the signal error of the IMU with methodologies such as a Kalman filter to diminish the influence of white noise, a Chebyshev filter to isolate the frequency values of a seismic motion, and a correction algorithm called zero velocity observation update (ZVOB) to detect seismic vibrations and diminish the influence of external perturbances. As a result, the IDMS is a methodology developed to measure displacements when a structure is in motion due to seismic vibration and provides information to detect failures opportunely.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.