正长石(001)表面的界面结构和酸度:了解表面金属阳离子的影响

IF 2.7 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Xi Zhang, Xiandong Liu, Yingchun Zhang, Xiancai Lu
{"title":"正长石(001)表面的界面结构和酸度:了解表面金属阳离子的影响","authors":"Xi Zhang, Xiandong Liu, Yingchun Zhang, Xiancai Lu","doi":"10.2138/am-2023-9207","DOIUrl":null,"url":null,"abstract":"\n Surface acid chemistry is central to interfacial properties of orthoclase. In this study, we report a first principles molecular dynamics (FPMD) study of interfacial structures and acid constants (pKa) of orthoclase (001) with the presence of Na+/K+ cation on the surface. Detailed structural analyses show that Na+ and K+ show similar coordination structures on the surface while the exchange of Na+ for K+ hardly changes hydration structures of surface groups. The surface groups (i.e., ≡SiOH, ≡AlOH, and ≡AlOH2) have pKas of 11.5, 18.5, and 7.8 with K+ on the surface and 5.5, 17.7, and 4.3 with Na+ on the surface, respectively. FPMD derived pKas indicate that with K+ on the surface ≡AlOH2 is the only active group in the common pH range while Na+ decreases surface pKas of surface groups, that makes ≡AlOH2 and ≡SiOH active. Based on the pKas, we derive a PZC (point of zero charge) of 9.7 and 4.9 for orthoclase (001) with surface K+ and Na+, respectively. This means that Na+ significantly enhances surface acid reactivity. The implication for understanding geochemical properties of orthoclase was discussed with the focus on surface complexation of metal cations.","PeriodicalId":7768,"journal":{"name":"American Mineralogist","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial structure and acidity of orthoclase (001) surface: understanding the effect of surface metal cation\",\"authors\":\"Xi Zhang, Xiandong Liu, Yingchun Zhang, Xiancai Lu\",\"doi\":\"10.2138/am-2023-9207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Surface acid chemistry is central to interfacial properties of orthoclase. In this study, we report a first principles molecular dynamics (FPMD) study of interfacial structures and acid constants (pKa) of orthoclase (001) with the presence of Na+/K+ cation on the surface. Detailed structural analyses show that Na+ and K+ show similar coordination structures on the surface while the exchange of Na+ for K+ hardly changes hydration structures of surface groups. The surface groups (i.e., ≡SiOH, ≡AlOH, and ≡AlOH2) have pKas of 11.5, 18.5, and 7.8 with K+ on the surface and 5.5, 17.7, and 4.3 with Na+ on the surface, respectively. FPMD derived pKas indicate that with K+ on the surface ≡AlOH2 is the only active group in the common pH range while Na+ decreases surface pKas of surface groups, that makes ≡AlOH2 and ≡SiOH active. Based on the pKas, we derive a PZC (point of zero charge) of 9.7 and 4.9 for orthoclase (001) with surface K+ and Na+, respectively. This means that Na+ significantly enhances surface acid reactivity. The implication for understanding geochemical properties of orthoclase was discussed with the focus on surface complexation of metal cations.\",\"PeriodicalId\":7768,\"journal\":{\"name\":\"American Mineralogist\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Mineralogist\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2138/am-2023-9207\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Mineralogist","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2138/am-2023-9207","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

表面酸化学是正长岩界面性质的核心。在本研究中,我们报告了对正长石(001)表面存在 Na+/K+ 阳离子时的界面结构和酸常数(pKa)的第一原理分子动力学(FPMD)研究。详细的结构分析表明,Na+ 和 K+ 在表面呈现出相似的配位结构,而 Na+ 与 K+ 的交换几乎不会改变表面基团的水合结构。表面基团(即≡SiOH、≡AlOH 和 ≡AlOH2)的 pKas 分别为:K+ 在表面时 11.5、18.5 和 7.8,Na+ 在表面时 5.5、17.7 和 4.3。FPMD 导出的 pKas 表明,表面有 K+ 时,≡AlOH2 是常见 pH 值范围内唯一的活性基团,而 Na+ 则会降低表面基团的 pKas,从而使≡AlOH2 和≡SiOH 成为活性基团。根据 pKas,我们得出正长石(001)表面 K+和 Na+的 PZC(零电荷点)分别为 9.7 和 4.9。这意味着 Na+ 能显著增强表面酸反应性。重点讨论了金属阳离子的表面络合作用对理解正长岩地球化学性质的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interfacial structure and acidity of orthoclase (001) surface: understanding the effect of surface metal cation
Surface acid chemistry is central to interfacial properties of orthoclase. In this study, we report a first principles molecular dynamics (FPMD) study of interfacial structures and acid constants (pKa) of orthoclase (001) with the presence of Na+/K+ cation on the surface. Detailed structural analyses show that Na+ and K+ show similar coordination structures on the surface while the exchange of Na+ for K+ hardly changes hydration structures of surface groups. The surface groups (i.e., ≡SiOH, ≡AlOH, and ≡AlOH2) have pKas of 11.5, 18.5, and 7.8 with K+ on the surface and 5.5, 17.7, and 4.3 with Na+ on the surface, respectively. FPMD derived pKas indicate that with K+ on the surface ≡AlOH2 is the only active group in the common pH range while Na+ decreases surface pKas of surface groups, that makes ≡AlOH2 and ≡SiOH active. Based on the pKas, we derive a PZC (point of zero charge) of 9.7 and 4.9 for orthoclase (001) with surface K+ and Na+, respectively. This means that Na+ significantly enhances surface acid reactivity. The implication for understanding geochemical properties of orthoclase was discussed with the focus on surface complexation of metal cations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Mineralogist
American Mineralogist 地学-地球化学与地球物理
CiteScore
5.20
自引率
9.70%
发文量
276
审稿时长
1 months
期刊介绍: American Mineralogist: Journal of Earth and Planetary Materials (Am Min), is the flagship journal of the Mineralogical Society of America (MSA), continuously published since 1916. Am Min is home to some of the most important advances in the Earth Sciences. Our mission is a continuance of this heritage: to provide readers with reports on original scientific research, both fundamental and applied, with far reaching implications and far ranging appeal. Topics of interest cover all aspects of planetary evolution, and biological and atmospheric processes mediated by solid-state phenomena. These include, but are not limited to, mineralogy and crystallography, high- and low-temperature geochemistry, petrology, geofluids, bio-geochemistry, bio-mineralogy, synthetic materials of relevance to the Earth and planetary sciences, and breakthroughs in analytical methods of any of the aforementioned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信