Anudeep Mallarapu, I. Çaldichoury, Pierre L'Eplattenier, Nathaniel Sunderlin, S. Santhanagopalan
{"title":"用于汽车防撞应用的锂离子电池耦合多物理场建模","authors":"Anudeep Mallarapu, I. Çaldichoury, Pierre L'Eplattenier, Nathaniel Sunderlin, S. Santhanagopalan","doi":"10.1115/1.4066019","DOIUrl":null,"url":null,"abstract":"\n Considerable advances have been made on battery safety models, but achieving predictive accuracy across a wide range of conditions continues to be challenging. Interactions between dynamically evolving mechanical, electrical and thermal state variables make model prediction difficult during mechanical abuse scenarios. In this study, we develop a physics-based modeling approach which allows for choosing between different mechanical and electrochemical models depending on the required level of analysis. We demonstrate the use of this approach to connect cell-level abuse response to electrode-level and particle-level transport phenomenon. A pseudo-two-dimensional model and a simplified single-particle models are calibrated to electrical-thermal cycling data and applied to mechanically induced short circuit scenario to understand how the choice of electrochemical model affects the model prediction under abuse scenarios. These models are implemented using user defined subroutines on LS-DYNA finite element software and can be coupled with existing automotive crash safety models.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"113 37","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupled Multiphysics Modeling of Lithium-ion Batteries for Automotive Crashworthiness Applications\",\"authors\":\"Anudeep Mallarapu, I. Çaldichoury, Pierre L'Eplattenier, Nathaniel Sunderlin, S. Santhanagopalan\",\"doi\":\"10.1115/1.4066019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Considerable advances have been made on battery safety models, but achieving predictive accuracy across a wide range of conditions continues to be challenging. Interactions between dynamically evolving mechanical, electrical and thermal state variables make model prediction difficult during mechanical abuse scenarios. In this study, we develop a physics-based modeling approach which allows for choosing between different mechanical and electrochemical models depending on the required level of analysis. We demonstrate the use of this approach to connect cell-level abuse response to electrode-level and particle-level transport phenomenon. A pseudo-two-dimensional model and a simplified single-particle models are calibrated to electrical-thermal cycling data and applied to mechanically induced short circuit scenario to understand how the choice of electrochemical model affects the model prediction under abuse scenarios. These models are implemented using user defined subroutines on LS-DYNA finite element software and can be coupled with existing automotive crash safety models.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"113 37\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4066019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4066019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Coupled Multiphysics Modeling of Lithium-ion Batteries for Automotive Crashworthiness Applications
Considerable advances have been made on battery safety models, but achieving predictive accuracy across a wide range of conditions continues to be challenging. Interactions between dynamically evolving mechanical, electrical and thermal state variables make model prediction difficult during mechanical abuse scenarios. In this study, we develop a physics-based modeling approach which allows for choosing between different mechanical and electrochemical models depending on the required level of analysis. We demonstrate the use of this approach to connect cell-level abuse response to electrode-level and particle-level transport phenomenon. A pseudo-two-dimensional model and a simplified single-particle models are calibrated to electrical-thermal cycling data and applied to mechanically induced short circuit scenario to understand how the choice of electrochemical model affects the model prediction under abuse scenarios. These models are implemented using user defined subroutines on LS-DYNA finite element software and can be coupled with existing automotive crash safety models.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.