{"title":"加利福尼亚的钢镞种群受到区域缓冲作用的影响,可单独抵御多年严重干旱的影响","authors":"Haley Ohms, E. P. Palkovacs, D. Boughton","doi":"10.1139/cjfas-2023-0198","DOIUrl":null,"url":null,"abstract":"Weather extremes, such as drought, are predicted to be a strong determinant of species persistence under climate change. Yet predictions often fail to consider that variation in streamflow responses, variation in population dynamics, or adaptations to drought could buffer species against extremes. In this study we examined the responses of eight California (USA) steelhead populations to a severe drought from 2012 to 2016. We observed that streamflows were highly synchronous across the region in all seasons and did not appear to buffer drought impacts. Population dynamics were variable across the region and did appear to buffer the region from drought impacts. Some populations had very low productivity for four years associated with the drought, while others had slightly below-average productivity for only two years. Population synchrony was associated with spring-smolt flow, temperature and drought over time, but was not associated with winter-spawner or summer-juvenile conditions, suggesting populations may be adapted to drought. Our results highlight how regional buffering and adaptation can be important mechanisms against climate extremes both now and into the future.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"119 4","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"California steelhead populations were regionally buffered and individually resistant to a severe multi-year drought\",\"authors\":\"Haley Ohms, E. P. Palkovacs, D. Boughton\",\"doi\":\"10.1139/cjfas-2023-0198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weather extremes, such as drought, are predicted to be a strong determinant of species persistence under climate change. Yet predictions often fail to consider that variation in streamflow responses, variation in population dynamics, or adaptations to drought could buffer species against extremes. In this study we examined the responses of eight California (USA) steelhead populations to a severe drought from 2012 to 2016. We observed that streamflows were highly synchronous across the region in all seasons and did not appear to buffer drought impacts. Population dynamics were variable across the region and did appear to buffer the region from drought impacts. Some populations had very low productivity for four years associated with the drought, while others had slightly below-average productivity for only two years. Population synchrony was associated with spring-smolt flow, temperature and drought over time, but was not associated with winter-spawner or summer-juvenile conditions, suggesting populations may be adapted to drought. Our results highlight how regional buffering and adaptation can be important mechanisms against climate extremes both now and into the future.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"119 4\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1139/cjfas-2023-0198\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjfas-2023-0198","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
California steelhead populations were regionally buffered and individually resistant to a severe multi-year drought
Weather extremes, such as drought, are predicted to be a strong determinant of species persistence under climate change. Yet predictions often fail to consider that variation in streamflow responses, variation in population dynamics, or adaptations to drought could buffer species against extremes. In this study we examined the responses of eight California (USA) steelhead populations to a severe drought from 2012 to 2016. We observed that streamflows were highly synchronous across the region in all seasons and did not appear to buffer drought impacts. Population dynamics were variable across the region and did appear to buffer the region from drought impacts. Some populations had very low productivity for four years associated with the drought, while others had slightly below-average productivity for only two years. Population synchrony was associated with spring-smolt flow, temperature and drought over time, but was not associated with winter-spawner or summer-juvenile conditions, suggesting populations may be adapted to drought. Our results highlight how regional buffering and adaptation can be important mechanisms against climate extremes both now and into the future.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.