{"title":"用于可变渲染的条件混合路径引导","authors":"Zhimin Fan, Pengcheng Shi, Mufan Guo, Ruoyu Fu, Yanwen Guo, Jie Guo","doi":"10.1145/3658133","DOIUrl":null,"url":null,"abstract":"The efficiency of inverse optimization in physically based differentiable rendering heavily depends on the variance of Monte Carlo estimation. Despite recent advancements emphasizing the necessity of tailored differential sampling strategies, the general approaches remain unexplored.\n In this paper, we investigate the interplay between local sampling decisions and the estimation of light path derivatives. Considering that modern differentiable rendering algorithms share the same path for estimating differential radiance and ordinary radiance, we demonstrate that conventional guiding approaches, conditioned solely on the last vertex, cannot attain this density. Instead, a mixture of different sampling distributions is required, where the weights are conditioned on all the previously sampled vertices in the path. To embody our theory, we implement a conditional mixture path guiding that explicitly computes optimal weights on the fly. Furthermore, we show how to perform positivization to eliminate sign variance and extend to scenes with millions of parameters.\n To the best of our knowledge, this is the first generic framework for applying path guiding to differentiable rendering. Extensive experiments demonstrate that our method achieves nearly one order of magnitude improvements over state-of-the-art methods in terms of variance reduction in gradient estimation and errors of inverse optimization. The implementation of our proposed method is available at https://github.com/mollnn/conditional-mixture.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditional Mixture Path Guiding for Differentiable Rendering\",\"authors\":\"Zhimin Fan, Pengcheng Shi, Mufan Guo, Ruoyu Fu, Yanwen Guo, Jie Guo\",\"doi\":\"10.1145/3658133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficiency of inverse optimization in physically based differentiable rendering heavily depends on the variance of Monte Carlo estimation. Despite recent advancements emphasizing the necessity of tailored differential sampling strategies, the general approaches remain unexplored.\\n In this paper, we investigate the interplay between local sampling decisions and the estimation of light path derivatives. Considering that modern differentiable rendering algorithms share the same path for estimating differential radiance and ordinary radiance, we demonstrate that conventional guiding approaches, conditioned solely on the last vertex, cannot attain this density. Instead, a mixture of different sampling distributions is required, where the weights are conditioned on all the previously sampled vertices in the path. To embody our theory, we implement a conditional mixture path guiding that explicitly computes optimal weights on the fly. Furthermore, we show how to perform positivization to eliminate sign variance and extend to scenes with millions of parameters.\\n To the best of our knowledge, this is the first generic framework for applying path guiding to differentiable rendering. Extensive experiments demonstrate that our method achieves nearly one order of magnitude improvements over state-of-the-art methods in terms of variance reduction in gradient estimation and errors of inverse optimization. The implementation of our proposed method is available at https://github.com/mollnn/conditional-mixture.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3658133\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3658133","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Conditional Mixture Path Guiding for Differentiable Rendering
The efficiency of inverse optimization in physically based differentiable rendering heavily depends on the variance of Monte Carlo estimation. Despite recent advancements emphasizing the necessity of tailored differential sampling strategies, the general approaches remain unexplored.
In this paper, we investigate the interplay between local sampling decisions and the estimation of light path derivatives. Considering that modern differentiable rendering algorithms share the same path for estimating differential radiance and ordinary radiance, we demonstrate that conventional guiding approaches, conditioned solely on the last vertex, cannot attain this density. Instead, a mixture of different sampling distributions is required, where the weights are conditioned on all the previously sampled vertices in the path. To embody our theory, we implement a conditional mixture path guiding that explicitly computes optimal weights on the fly. Furthermore, we show how to perform positivization to eliminate sign variance and extend to scenes with millions of parameters.
To the best of our knowledge, this is the first generic framework for applying path guiding to differentiable rendering. Extensive experiments demonstrate that our method achieves nearly one order of magnitude improvements over state-of-the-art methods in terms of variance reduction in gradient estimation and errors of inverse optimization. The implementation of our proposed method is available at https://github.com/mollnn/conditional-mixture.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.