使用预冷血浆实验法,水浴解冻和冰箱解冻对低温沉淀纤维蛋白原和因子 VIII 含量的影响

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jessie A. Swanson, M. Soland, Scott A. Hammel, J. Juskewitch
{"title":"使用预冷血浆实验法,水浴解冻和冰箱解冻对低温沉淀纤维蛋白原和因子 VIII 含量的影响","authors":"Jessie A. Swanson, M. Soland, Scott A. Hammel, J. Juskewitch","doi":"10.1159/000540089","DOIUrl":null,"url":null,"abstract":"Introduction: Originally developed as a form of factor VIII concentrate, cryoprecipitate’s primary clinical use has changed to treat fibrinogen deficiency as highlighted by recent approval of pathogen-reduced cryoprecipitated fibrinogen concentrates. The methodology by which frozen plasma is thawed during cryoprecipitate manufacturing is not standardized. This study compared plasma thawing techniques on cryoprecipitate fibrinogen and factor VIII levels. Methods: A matched pairwise experimental design was employed across three experiments to compare plasma thawing approaches (water bath or 24–48 h refrigerator). Each experiment involved the creation of 10 sets of ten homogenous frozen plasma pools which were then used to manufacture 10 pairs of cryoprecipitate pools differing only by assigned plasma thawing method. Total cryoprecipitate fibrinogen and factor VIII content between plasma thawing methods were compared using matched t-testing within each experiment. Results: Compared to water bath thawing, 24-h refrigerator thawing led to significantly higher cryoprecipitate fibrinogen content (2,554 mg vs. 1,824 mg; p < 0.001) and significantly lower cryoprecipitate factor VIII content (601 IU vs. 709 IU; p < 0.001). Longer refrigerator thaw times (36 and 48 h) led to significantly higher cryoprecipitate fibrinogen content than 24-h refrigerator thaw (3,180 mg vs. 2,956 mg and 2,893 mg vs. 2,483 mg, respectively; p = 0.01–0.03). Conclusion: Using homogenous frozen plasma units in a matched pairwise experimental design, refrigerator plasma thawing led to superior cryoprecipitate fibrinogen yields and inferior cryoprecipitate factor VIII yields. When maximizing cryoprecipitate fibrinogen yields, refrigerator plasma thawing, and in particular longer thawing times (36–48 h), should be considered.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Water Bath versus Refrigerator Thaw on Cryoprecipitate Fibrinogen and Factor VIII Content Using a Pre-Pooled Plasma Experimental Approach\",\"authors\":\"Jessie A. Swanson, M. Soland, Scott A. Hammel, J. Juskewitch\",\"doi\":\"10.1159/000540089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Originally developed as a form of factor VIII concentrate, cryoprecipitate’s primary clinical use has changed to treat fibrinogen deficiency as highlighted by recent approval of pathogen-reduced cryoprecipitated fibrinogen concentrates. The methodology by which frozen plasma is thawed during cryoprecipitate manufacturing is not standardized. This study compared plasma thawing techniques on cryoprecipitate fibrinogen and factor VIII levels. Methods: A matched pairwise experimental design was employed across three experiments to compare plasma thawing approaches (water bath or 24–48 h refrigerator). Each experiment involved the creation of 10 sets of ten homogenous frozen plasma pools which were then used to manufacture 10 pairs of cryoprecipitate pools differing only by assigned plasma thawing method. Total cryoprecipitate fibrinogen and factor VIII content between plasma thawing methods were compared using matched t-testing within each experiment. Results: Compared to water bath thawing, 24-h refrigerator thawing led to significantly higher cryoprecipitate fibrinogen content (2,554 mg vs. 1,824 mg; p < 0.001) and significantly lower cryoprecipitate factor VIII content (601 IU vs. 709 IU; p < 0.001). Longer refrigerator thaw times (36 and 48 h) led to significantly higher cryoprecipitate fibrinogen content than 24-h refrigerator thaw (3,180 mg vs. 2,956 mg and 2,893 mg vs. 2,483 mg, respectively; p = 0.01–0.03). Conclusion: Using homogenous frozen plasma units in a matched pairwise experimental design, refrigerator plasma thawing led to superior cryoprecipitate fibrinogen yields and inferior cryoprecipitate factor VIII yields. When maximizing cryoprecipitate fibrinogen yields, refrigerator plasma thawing, and in particular longer thawing times (36–48 h), should be considered.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000540089\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000540089","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

简介:低温沉淀最初是作为第八因子浓缩物的一种形式而开发的,其主要临床用途已转变为治疗纤维蛋白原缺乏症,最近批准的病原体减少型低温沉淀纤维蛋白原浓缩物就凸显了这一点。低温沉淀生产过程中解冻冷冻血浆的方法尚未标准化。本研究比较了血浆解冻技术对低温沉淀纤维蛋白原和因子 VIII 水平的影响。研究方法在三项实验中采用了配对实验设计来比较血浆解冻方法(水浴或 24-48 小时冰箱)。每项实验都包括创建 10 组 10 个同质冷冻血浆池,然后用这些血浆池创建 10 对低温沉淀池,这 10 对低温沉淀池的不同之处仅在于指定的血浆解冻方法。在每个实验中,使用匹配 t 检验比较不同血浆解冻方法的低温沉淀纤维蛋白原和因子 VIII 总含量。结果:与水浴解冻相比,24 小时冰箱解冻的低温沉淀纤维蛋白原含量明显更高(2,554 毫克对 1,824 毫克;p < 0.001),而低温沉淀第八因子含量明显更低(601 IU 对 709 IU;p < 0.001)。较长的冷藏解冻时间(36 和 48 小时)导致低温沉淀纤维蛋白原含量明显高于 24 小时冷藏解冻(分别为 3,180 毫克对 2,956 毫克和 2,893 毫克对 2,483 毫克;p = 0.01-0.03)。结论在配对实验设计中使用同质冰冻血浆单位,冷藏血浆解冻可提高低温沉淀纤维蛋白原的产量,而降低低温沉淀第八因子的产量。在最大限度提高低温沉淀纤维蛋白原产量时,应考虑冷藏血浆解冻,尤其是延长解冻时间(36-48 小时)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Water Bath versus Refrigerator Thaw on Cryoprecipitate Fibrinogen and Factor VIII Content Using a Pre-Pooled Plasma Experimental Approach
Introduction: Originally developed as a form of factor VIII concentrate, cryoprecipitate’s primary clinical use has changed to treat fibrinogen deficiency as highlighted by recent approval of pathogen-reduced cryoprecipitated fibrinogen concentrates. The methodology by which frozen plasma is thawed during cryoprecipitate manufacturing is not standardized. This study compared plasma thawing techniques on cryoprecipitate fibrinogen and factor VIII levels. Methods: A matched pairwise experimental design was employed across three experiments to compare plasma thawing approaches (water bath or 24–48 h refrigerator). Each experiment involved the creation of 10 sets of ten homogenous frozen plasma pools which were then used to manufacture 10 pairs of cryoprecipitate pools differing only by assigned plasma thawing method. Total cryoprecipitate fibrinogen and factor VIII content between plasma thawing methods were compared using matched t-testing within each experiment. Results: Compared to water bath thawing, 24-h refrigerator thawing led to significantly higher cryoprecipitate fibrinogen content (2,554 mg vs. 1,824 mg; p < 0.001) and significantly lower cryoprecipitate factor VIII content (601 IU vs. 709 IU; p < 0.001). Longer refrigerator thaw times (36 and 48 h) led to significantly higher cryoprecipitate fibrinogen content than 24-h refrigerator thaw (3,180 mg vs. 2,956 mg and 2,893 mg vs. 2,483 mg, respectively; p = 0.01–0.03). Conclusion: Using homogenous frozen plasma units in a matched pairwise experimental design, refrigerator plasma thawing led to superior cryoprecipitate fibrinogen yields and inferior cryoprecipitate factor VIII yields. When maximizing cryoprecipitate fibrinogen yields, refrigerator plasma thawing, and in particular longer thawing times (36–48 h), should be considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信