Akash Yadav, Ritesh Pandey, Navnit Jha, A. K. Misra
{"title":"害虫和杀虫剂对多作物系统中作物产量的影响建模","authors":"Akash Yadav, Ritesh Pandey, Navnit Jha, A. K. Misra","doi":"10.1142/s0218339024500396","DOIUrl":null,"url":null,"abstract":"Pest infestation poses a significant threat to agricultural crop yields, and to control it, farmers spray chemical pesticides. The persistent use of these chemical agents not only leads to pesticide residues within crops but also exerts collateral damage on the beneficial pest population. In this research work, we formulate a nonlinear mathematical model to assess the impacts of pesticide on crop yields within a multiple cropping system. Model analysis illustrates that crop consumption rates destabilize, and the spraying rate of pesticide stabilizes the system. Furthermore, we determine conditions for the global stability of the coexisting equilibrium and conduct a global sensitivity analysis to identify model parameters that significantly influence pest population density. Our findings emphasize that, for effective pest population control and enhanced crop yields, farmers should choose either pesticides with a high pest abatement rate or those with a higher pesticide uptake rate. Considering the spraying rate of pesticide as time-dependent, we also suggest an optimal control strategy to minimize the pest population and associated costs. We provide analytical results backed by numerical simulations implemented through the non-standard finite difference scheme to support our findings.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"9 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODELING THE EFFECTS OF PESTS AND PESTICIDE ON CROP YIELDS IN A MULTIPLE CROPPING SYSTEM\",\"authors\":\"Akash Yadav, Ritesh Pandey, Navnit Jha, A. K. Misra\",\"doi\":\"10.1142/s0218339024500396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pest infestation poses a significant threat to agricultural crop yields, and to control it, farmers spray chemical pesticides. The persistent use of these chemical agents not only leads to pesticide residues within crops but also exerts collateral damage on the beneficial pest population. In this research work, we formulate a nonlinear mathematical model to assess the impacts of pesticide on crop yields within a multiple cropping system. Model analysis illustrates that crop consumption rates destabilize, and the spraying rate of pesticide stabilizes the system. Furthermore, we determine conditions for the global stability of the coexisting equilibrium and conduct a global sensitivity analysis to identify model parameters that significantly influence pest population density. Our findings emphasize that, for effective pest population control and enhanced crop yields, farmers should choose either pesticides with a high pest abatement rate or those with a higher pesticide uptake rate. Considering the spraying rate of pesticide as time-dependent, we also suggest an optimal control strategy to minimize the pest population and associated costs. We provide analytical results backed by numerical simulations implemented through the non-standard finite difference scheme to support our findings.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218339024500396\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s0218339024500396","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
MODELING THE EFFECTS OF PESTS AND PESTICIDE ON CROP YIELDS IN A MULTIPLE CROPPING SYSTEM
Pest infestation poses a significant threat to agricultural crop yields, and to control it, farmers spray chemical pesticides. The persistent use of these chemical agents not only leads to pesticide residues within crops but also exerts collateral damage on the beneficial pest population. In this research work, we formulate a nonlinear mathematical model to assess the impacts of pesticide on crop yields within a multiple cropping system. Model analysis illustrates that crop consumption rates destabilize, and the spraying rate of pesticide stabilizes the system. Furthermore, we determine conditions for the global stability of the coexisting equilibrium and conduct a global sensitivity analysis to identify model parameters that significantly influence pest population density. Our findings emphasize that, for effective pest population control and enhanced crop yields, farmers should choose either pesticides with a high pest abatement rate or those with a higher pesticide uptake rate. Considering the spraying rate of pesticide as time-dependent, we also suggest an optimal control strategy to minimize the pest population and associated costs. We provide analytical results backed by numerical simulations implemented through the non-standard finite difference scheme to support our findings.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.