Villavicencio Geiser, NELSON-LÓPEZ Ángela, DOMÍNGUEZ-ALEMÁN Itzel, HERNÁNDEZ-GÓMEZ Juan Carlos
{"title":"共生细菌在病原体相互作用中的影响:两栖动物种群中的树枝蝙蝠疫病和假单胞菌的案例在两栖动物种群中的影响","authors":"Villavicencio Geiser, NELSON-LÓPEZ Ángela, DOMÍNGUEZ-ALEMÁN Itzel, HERNÁNDEZ-GÓMEZ Juan Carlos","doi":"10.1142/s0218339024400060","DOIUrl":null,"url":null,"abstract":"The decline in amphibian populations in recent decades may be linked to the occurrence of infectious diseases such as chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd). It is known that symbiotic bacteria protect the host due to their inhibitory nature. However, how the population dynamics of amphibians is affected by additional effects provided by symbiotic bacteria has not been analyzed in depth. In this paper, a model is proposed to describe the interaction among susceptible amphibians, susceptible amphibians with symbiotic bacteria and amphibians with chytrid fungus. When the modeling takes into account the additional reproductive benefits that the symbiont Pseudomonas sp. grants to the host, multiple endemic equilibrium points can exist if [Formula: see text] ([Formula: see text] is the basic reproduction number for Bd). In this scenario, the existence of a subcritical bifurcation at [Formula: see text], which can occur in two different disease-free equilibrium points, gives rise to complex dynamics and stability scenarios. Particularly, the analysis of the model shows that a sudden increase of fungus-infected amphibians can occur even when [Formula: see text] due to bistability phenomena. In this scenario, the existence of a subcritical bifurcation, which translates for the fungus into colonization even for values of [Formula: see text] less than one, represents an advantage for the chytrid fungus Batrachochytrium dendrobatidis since the pathogen should benefit from remaining as close as possible to an endemic equilibrium. To control the fungal infection, [Formula: see text] must be reduced to a value below one until the endemic equilibrium points disappear. Finally, we show that the amphibian population can reach a critical population level close to an extinction scenario when [Formula: see text] increases.","PeriodicalId":54872,"journal":{"name":"Journal of Biological Systems","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EFFECTS OF SYMBIOTIC BACTERIA IN PATHOGENIC INTERACTIONS: THE CASE OF BATRACHOCHYTRIUM DENDROBATIDIS AND PSEUDOMONAS SP. IN AMPHIBIAN POPULATIONS\",\"authors\":\"Villavicencio Geiser, NELSON-LÓPEZ Ángela, DOMÍNGUEZ-ALEMÁN Itzel, HERNÁNDEZ-GÓMEZ Juan Carlos\",\"doi\":\"10.1142/s0218339024400060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The decline in amphibian populations in recent decades may be linked to the occurrence of infectious diseases such as chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd). It is known that symbiotic bacteria protect the host due to their inhibitory nature. However, how the population dynamics of amphibians is affected by additional effects provided by symbiotic bacteria has not been analyzed in depth. In this paper, a model is proposed to describe the interaction among susceptible amphibians, susceptible amphibians with symbiotic bacteria and amphibians with chytrid fungus. When the modeling takes into account the additional reproductive benefits that the symbiont Pseudomonas sp. grants to the host, multiple endemic equilibrium points can exist if [Formula: see text] ([Formula: see text] is the basic reproduction number for Bd). In this scenario, the existence of a subcritical bifurcation at [Formula: see text], which can occur in two different disease-free equilibrium points, gives rise to complex dynamics and stability scenarios. Particularly, the analysis of the model shows that a sudden increase of fungus-infected amphibians can occur even when [Formula: see text] due to bistability phenomena. In this scenario, the existence of a subcritical bifurcation, which translates for the fungus into colonization even for values of [Formula: see text] less than one, represents an advantage for the chytrid fungus Batrachochytrium dendrobatidis since the pathogen should benefit from remaining as close as possible to an endemic equilibrium. To control the fungal infection, [Formula: see text] must be reduced to a value below one until the endemic equilibrium points disappear. Finally, we show that the amphibian population can reach a critical population level close to an extinction scenario when [Formula: see text] increases.\",\"PeriodicalId\":54872,\"journal\":{\"name\":\"Journal of Biological Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218339024400060\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s0218339024400060","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
EFFECTS OF SYMBIOTIC BACTERIA IN PATHOGENIC INTERACTIONS: THE CASE OF BATRACHOCHYTRIUM DENDROBATIDIS AND PSEUDOMONAS SP. IN AMPHIBIAN POPULATIONS
The decline in amphibian populations in recent decades may be linked to the occurrence of infectious diseases such as chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd). It is known that symbiotic bacteria protect the host due to their inhibitory nature. However, how the population dynamics of amphibians is affected by additional effects provided by symbiotic bacteria has not been analyzed in depth. In this paper, a model is proposed to describe the interaction among susceptible amphibians, susceptible amphibians with symbiotic bacteria and amphibians with chytrid fungus. When the modeling takes into account the additional reproductive benefits that the symbiont Pseudomonas sp. grants to the host, multiple endemic equilibrium points can exist if [Formula: see text] ([Formula: see text] is the basic reproduction number for Bd). In this scenario, the existence of a subcritical bifurcation at [Formula: see text], which can occur in two different disease-free equilibrium points, gives rise to complex dynamics and stability scenarios. Particularly, the analysis of the model shows that a sudden increase of fungus-infected amphibians can occur even when [Formula: see text] due to bistability phenomena. In this scenario, the existence of a subcritical bifurcation, which translates for the fungus into colonization even for values of [Formula: see text] less than one, represents an advantage for the chytrid fungus Batrachochytrium dendrobatidis since the pathogen should benefit from remaining as close as possible to an endemic equilibrium. To control the fungal infection, [Formula: see text] must be reduced to a value below one until the endemic equilibrium points disappear. Finally, we show that the amphibian population can reach a critical population level close to an extinction scenario when [Formula: see text] increases.
期刊介绍:
The Journal of Biological Systems is published quarterly. The goal of the Journal is to promote interdisciplinary approaches in Biology and in Medicine, and the study of biological situations with a variety of tools, including mathematical and general systems methods. The Journal solicits original research papers and survey articles in areas that include (but are not limited to):
Complex systems studies; isomorphies; nonlinear dynamics; entropy; mathematical tools and systems theories with applications in Biology and Medicine.
Interdisciplinary approaches in Biology and Medicine; transfer of methods from one discipline to another; integration of biological levels, from atomic to molecular, macromolecular, cellular, and organic levels; animal biology; plant biology.
Environmental studies; relationships between individuals, populations, communities and ecosystems; bioeconomics, management of renewable resources; hierarchy theory; integration of spatial and time scales.
Evolutionary biology; co-evolutions; genetics and evolution; branching processes and phyllotaxis.
Medical systems; physiology; cardiac modeling; computer models in Medicine; cancer research; epidemiology.
Numerical simulations and computations; numerical study and analysis of biological data.
Epistemology; history of science.
The journal will also publish book reviews.