{"title":"基于改进型卷积神经网络-双向长短期记忆的拖拉机传动系统故障诊断方法","authors":"Liyou Xu, Guoxiang Zhao, Sixia Zhao, Yiwei Wu, Xiaoliang Chen","doi":"10.3390/machines12070492","DOIUrl":null,"url":null,"abstract":"In response to the problems of limited algorithms and low diagnostic accuracy for fault diagnosis in large tractor transmission systems, as well as the high noise levels in tractor working environments, a defect detection approach for tractor transmission systems is proposed using an enhanced convolutional neural network (CNN) and a bidirectional long short-term memory neural network (BILSTM). This approach uses a one-dimensional convolutional neural network (1DCNN) to create three feature extractors of varying scales, directly extracting feature information from different levels of the raw vibration signals. Simultaneously, in order to enhance the model’s predicted accuracy and learn the data features more effectively, it presents the multi-head attention mechanism (MHA). To overcome the issue of high noise levels in tractor working environments and enhance the model’s robustness, an adaptive soft threshold is introduced. Finally, to recognize and classify faults, the fused feature data are fed into a classifier made up of bidirectional long short-term memory (BILSTM) and fully linked layers. The analytical findings demonstrate that the fault recognition accuracy of the method described in this article is over 98%, and it also has better performance in noisy environments.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Diagnosis Method for Tractor Transmission System Based on Improved Convolutional Neural Network–Bidirectional Long Short-Term Memory\",\"authors\":\"Liyou Xu, Guoxiang Zhao, Sixia Zhao, Yiwei Wu, Xiaoliang Chen\",\"doi\":\"10.3390/machines12070492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In response to the problems of limited algorithms and low diagnostic accuracy for fault diagnosis in large tractor transmission systems, as well as the high noise levels in tractor working environments, a defect detection approach for tractor transmission systems is proposed using an enhanced convolutional neural network (CNN) and a bidirectional long short-term memory neural network (BILSTM). This approach uses a one-dimensional convolutional neural network (1DCNN) to create three feature extractors of varying scales, directly extracting feature information from different levels of the raw vibration signals. Simultaneously, in order to enhance the model’s predicted accuracy and learn the data features more effectively, it presents the multi-head attention mechanism (MHA). To overcome the issue of high noise levels in tractor working environments and enhance the model’s robustness, an adaptive soft threshold is introduced. Finally, to recognize and classify faults, the fused feature data are fed into a classifier made up of bidirectional long short-term memory (BILSTM) and fully linked layers. The analytical findings demonstrate that the fault recognition accuracy of the method described in this article is over 98%, and it also has better performance in noisy environments.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/machines12070492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines12070492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Fault Diagnosis Method for Tractor Transmission System Based on Improved Convolutional Neural Network–Bidirectional Long Short-Term Memory
In response to the problems of limited algorithms and low diagnostic accuracy for fault diagnosis in large tractor transmission systems, as well as the high noise levels in tractor working environments, a defect detection approach for tractor transmission systems is proposed using an enhanced convolutional neural network (CNN) and a bidirectional long short-term memory neural network (BILSTM). This approach uses a one-dimensional convolutional neural network (1DCNN) to create three feature extractors of varying scales, directly extracting feature information from different levels of the raw vibration signals. Simultaneously, in order to enhance the model’s predicted accuracy and learn the data features more effectively, it presents the multi-head attention mechanism (MHA). To overcome the issue of high noise levels in tractor working environments and enhance the model’s robustness, an adaptive soft threshold is introduced. Finally, to recognize and classify faults, the fused feature data are fed into a classifier made up of bidirectional long short-term memory (BILSTM) and fully linked layers. The analytical findings demonstrate that the fault recognition accuracy of the method described in this article is over 98%, and it also has better performance in noisy environments.