外压下聚乙烯管道-就地固化管道内衬复合结构的承载能力研究

IF 3.1 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Xinyi Wang, Cong Zeng, Xuefeng Yan, Peng Zhang
{"title":"外压下聚乙烯管道-就地固化管道内衬复合结构的承载能力研究","authors":"Xinyi Wang, Cong Zeng, Xuefeng Yan, Peng Zhang","doi":"10.3390/buildings14072253","DOIUrl":null,"url":null,"abstract":"Cured-in-place pipe (CIPP) technology is used to repair deformed municipal polyethylene (PE) pipes caused by design flaws, construction issues, or external loads. However, research on CIPP for PE pipes is limited, restricting its broader application. This research focuses on the mechanical response characteristics and failure modes of the composite PE pipe–CIPP liner structure under external loads. Using experimental setups involving comparative test groups with different diameters and wall thickness ratios (DR values, defined as the ratio of the pipe’s outer diameter to its wall thickness), this study evaluates the effects of the liner’s elastic modulus, the bonding effectiveness at the PE pipe–CIPP liner interface, and the initial ovality of the pipes on the load-bearing capacity. The experimental results reveal that CIPP liners substantially enhance the stiffness and load-bearing capacity of PE pipes, with improvements ranging from 200% to nearly 500% depending on the pipe’s DR value. A novel ring stiffness prediction model is also introduced and validated against the experimental data. This model provides a theoretical framework for understanding the complex interactions at the PE pipe–CIPP liner interface and aids in designing more resilient urban drainage systems.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Bearing Capacity of the Polyethylene Pipe–Cured-In-Place Pipe Liner Composite Structure under External Pressure\",\"authors\":\"Xinyi Wang, Cong Zeng, Xuefeng Yan, Peng Zhang\",\"doi\":\"10.3390/buildings14072253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cured-in-place pipe (CIPP) technology is used to repair deformed municipal polyethylene (PE) pipes caused by design flaws, construction issues, or external loads. However, research on CIPP for PE pipes is limited, restricting its broader application. This research focuses on the mechanical response characteristics and failure modes of the composite PE pipe–CIPP liner structure under external loads. Using experimental setups involving comparative test groups with different diameters and wall thickness ratios (DR values, defined as the ratio of the pipe’s outer diameter to its wall thickness), this study evaluates the effects of the liner’s elastic modulus, the bonding effectiveness at the PE pipe–CIPP liner interface, and the initial ovality of the pipes on the load-bearing capacity. The experimental results reveal that CIPP liners substantially enhance the stiffness and load-bearing capacity of PE pipes, with improvements ranging from 200% to nearly 500% depending on the pipe’s DR value. A novel ring stiffness prediction model is also introduced and validated against the experimental data. This model provides a theoretical framework for understanding the complex interactions at the PE pipe–CIPP liner interface and aids in designing more resilient urban drainage systems.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14072253\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14072253","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

就地固化管道(CIPP)技术可用于修复因设计缺陷、施工问题或外部负载而导致变形的市政聚乙烯(PE)管道。然而,有关聚乙烯管材 CIPP 的研究十分有限,限制了其更广泛的应用。本研究的重点是聚乙烯管材-CIPP 复合内衬结构在外部荷载作用下的机械响应特性和失效模式。本研究利用不同直径和壁厚比(DR 值,定义为管材外径与壁厚之比)的对比试验组进行实验设置,评估了衬垫的弹性模量、聚乙烯管材-CIPP 衬垫界面的粘合效果以及管材的初始椭圆度对承载能力的影响。实验结果表明,CIPP 衬里可大幅提高聚乙烯管材的刚度和承载能力,根据管材的 DR 值,提高幅度从 200% 到近 500%。此外,还介绍了一种新型环刚度预测模型,并根据实验数据进行了验证。该模型为理解聚乙烯管材-CIPP 内衬管界面的复杂相互作用提供了一个理论框架,有助于设计更具弹性的城市排水系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the Bearing Capacity of the Polyethylene Pipe–Cured-In-Place Pipe Liner Composite Structure under External Pressure
Cured-in-place pipe (CIPP) technology is used to repair deformed municipal polyethylene (PE) pipes caused by design flaws, construction issues, or external loads. However, research on CIPP for PE pipes is limited, restricting its broader application. This research focuses on the mechanical response characteristics and failure modes of the composite PE pipe–CIPP liner structure under external loads. Using experimental setups involving comparative test groups with different diameters and wall thickness ratios (DR values, defined as the ratio of the pipe’s outer diameter to its wall thickness), this study evaluates the effects of the liner’s elastic modulus, the bonding effectiveness at the PE pipe–CIPP liner interface, and the initial ovality of the pipes on the load-bearing capacity. The experimental results reveal that CIPP liners substantially enhance the stiffness and load-bearing capacity of PE pipes, with improvements ranging from 200% to nearly 500% depending on the pipe’s DR value. A novel ring stiffness prediction model is also introduced and validated against the experimental data. This model provides a theoretical framework for understanding the complex interactions at the PE pipe–CIPP liner interface and aids in designing more resilient urban drainage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Buildings
Buildings Multiple-
CiteScore
3.40
自引率
26.30%
发文量
1883
审稿时长
11 weeks
期刊介绍: BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信