{"title":"随机中间缺陷对焊接接头疲劳行为的影响:损伤演变和寿命预测","authors":"Mengyue Xu, Xin Huang, Shaolin Li, Hongyu Qi, Xiaoguang Yang, Duoqi Shi","doi":"10.1111/ffe.14390","DOIUrl":null,"url":null,"abstract":"<p>Random meso-scale defects within welded joints can affect the structural damage process and cause dispersion in the fatigue lifetime of welded joints. In this paper, a meso-scale stochastic damage approach is used to investigate the effect of random, meso-scale defects on the fatigue damage lifetime of welded joints under different loads. First, we established an elastic–plastic fatigue damage model considering meso-defects in the weld metal. Secondly, the fatigue lifetimes for gas tungsten arc welding and gas metal arc welding welded joints were predicted, with most of the predictions within the twofold dispersion factor. Thirdly, the Monte Carlo simulation method was used to investigate the influence of meso-defect size on the fatigue lifetime dispersion degree, and the fatigue lifetime distribution under different loads was statistically analyzed.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 10","pages":"3619-3632"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of random meso-defects on fatigue behavior of welded joints: Damage evolution and lifetime prediction\",\"authors\":\"Mengyue Xu, Xin Huang, Shaolin Li, Hongyu Qi, Xiaoguang Yang, Duoqi Shi\",\"doi\":\"10.1111/ffe.14390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Random meso-scale defects within welded joints can affect the structural damage process and cause dispersion in the fatigue lifetime of welded joints. In this paper, a meso-scale stochastic damage approach is used to investigate the effect of random, meso-scale defects on the fatigue damage lifetime of welded joints under different loads. First, we established an elastic–plastic fatigue damage model considering meso-defects in the weld metal. Secondly, the fatigue lifetimes for gas tungsten arc welding and gas metal arc welding welded joints were predicted, with most of the predictions within the twofold dispersion factor. Thirdly, the Monte Carlo simulation method was used to investigate the influence of meso-defect size on the fatigue lifetime dispersion degree, and the fatigue lifetime distribution under different loads was statistically analyzed.</p>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"47 10\",\"pages\":\"3619-3632\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14390\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14390","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effects of random meso-defects on fatigue behavior of welded joints: Damage evolution and lifetime prediction
Random meso-scale defects within welded joints can affect the structural damage process and cause dispersion in the fatigue lifetime of welded joints. In this paper, a meso-scale stochastic damage approach is used to investigate the effect of random, meso-scale defects on the fatigue damage lifetime of welded joints under different loads. First, we established an elastic–plastic fatigue damage model considering meso-defects in the weld metal. Secondly, the fatigue lifetimes for gas tungsten arc welding and gas metal arc welding welded joints were predicted, with most of the predictions within the twofold dispersion factor. Thirdly, the Monte Carlo simulation method was used to investigate the influence of meso-defect size on the fatigue lifetime dispersion degree, and the fatigue lifetime distribution under different loads was statistically analyzed.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.