以安全为中心,精确控制为手术机器人设计的改良十二指肠镜

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yuxuan Cheng, Ruyan Yan, Bingyi Liu, Chun Yang, Tianyu Xie
{"title":"以安全为中心,精确控制为手术机器人设计的改良十二指肠镜","authors":"Yuxuan Cheng, Ruyan Yan, Bingyi Liu, Chun Yang, Tianyu Xie","doi":"10.3390/machines12080500","DOIUrl":null,"url":null,"abstract":"There is limited research on robotic systems designed for Endoscopic Retrograde Cholangiopancreatography (ERCP) procedures using a side-view duodenoscope. The unique structure of the duodenoscope presents challenges to safely and precisely control the distal end pose. Control methods applied can reduce potential medical risks. We have redesigned the control section of the duodenoscope to facilitate its manipulation by a robotic system. An orthogonal compensator is employed to rectify the motion planes to standard planes. A hysteresis compensator based on the Prandtl-Ishlinskii model enables precise control of the distal pose of the duodenoscope. Furthermore, we utilize a contact force prediction model to prevent excessive contact force at the distal end. The performance of the modified duodenoscope is comparable to that of the standard duodenoscope. Following orthogonal compensation, the deviation angles of the motion planes is reduced by 32% to 98%. Post-hysteresis compensation, the root mean square error (RMSE) of the output angle of the distal end is decreased from 8.347° to 4.826°. The accuracy of distal end contact force prediction was approximately ±25% under conditions of high contact force. In conclusion, the modification and control strategy we proposed can achieve relatively safe and precise control of bending section, laying the foundation for the subsequent roboticization of duodenoscope systems for ERCP procedures.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safety-Centric Precision Control of a Modified Duodenoscope Designed for Surgical Robotics\",\"authors\":\"Yuxuan Cheng, Ruyan Yan, Bingyi Liu, Chun Yang, Tianyu Xie\",\"doi\":\"10.3390/machines12080500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is limited research on robotic systems designed for Endoscopic Retrograde Cholangiopancreatography (ERCP) procedures using a side-view duodenoscope. The unique structure of the duodenoscope presents challenges to safely and precisely control the distal end pose. Control methods applied can reduce potential medical risks. We have redesigned the control section of the duodenoscope to facilitate its manipulation by a robotic system. An orthogonal compensator is employed to rectify the motion planes to standard planes. A hysteresis compensator based on the Prandtl-Ishlinskii model enables precise control of the distal pose of the duodenoscope. Furthermore, we utilize a contact force prediction model to prevent excessive contact force at the distal end. The performance of the modified duodenoscope is comparable to that of the standard duodenoscope. Following orthogonal compensation, the deviation angles of the motion planes is reduced by 32% to 98%. Post-hysteresis compensation, the root mean square error (RMSE) of the output angle of the distal end is decreased from 8.347° to 4.826°. The accuracy of distal end contact force prediction was approximately ±25% under conditions of high contact force. In conclusion, the modification and control strategy we proposed can achieve relatively safe and precise control of bending section, laying the foundation for the subsequent roboticization of duodenoscope systems for ERCP procedures.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/machines12080500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines12080500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

针对使用侧视十二指肠镜进行内镜逆行胰胆管造影术(ERCP)的机器人系统的研究十分有限。十二指肠镜的独特结构给安全、精确地控制远端姿势带来了挑战。采用控制方法可以降低潜在的医疗风险。我们重新设计了十二指肠镜的控制部分,以方便机器人系统对其进行操控。我们采用了一个正交补偿器,将运动平面矫正为标准平面。基于普朗特-伊什林斯基模型的滞后补偿器可实现对十二指肠镜远端姿势的精确控制。此外,我们还利用接触力预测模型来防止远端接触力过大。改进后的十二指肠镜的性能与标准十二指肠镜相当。经过正交补偿后,运动平面的偏差角度减少了 32% 到 98%。滞后补偿后,远端输出角的均方根误差(RMSE)从 8.347°降至 4.826°。在高接触力条件下,远端接触力预测精度约为±25%。总之,我们提出的修改和控制策略可以实现对弯曲部分相对安全和精确的控制,为ERCP手术十二指肠镜系统的后续机器人化奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Safety-Centric Precision Control of a Modified Duodenoscope Designed for Surgical Robotics
There is limited research on robotic systems designed for Endoscopic Retrograde Cholangiopancreatography (ERCP) procedures using a side-view duodenoscope. The unique structure of the duodenoscope presents challenges to safely and precisely control the distal end pose. Control methods applied can reduce potential medical risks. We have redesigned the control section of the duodenoscope to facilitate its manipulation by a robotic system. An orthogonal compensator is employed to rectify the motion planes to standard planes. A hysteresis compensator based on the Prandtl-Ishlinskii model enables precise control of the distal pose of the duodenoscope. Furthermore, we utilize a contact force prediction model to prevent excessive contact force at the distal end. The performance of the modified duodenoscope is comparable to that of the standard duodenoscope. Following orthogonal compensation, the deviation angles of the motion planes is reduced by 32% to 98%. Post-hysteresis compensation, the root mean square error (RMSE) of the output angle of the distal end is decreased from 8.347° to 4.826°. The accuracy of distal end contact force prediction was approximately ±25% under conditions of high contact force. In conclusion, the modification and control strategy we proposed can achieve relatively safe and precise control of bending section, laying the foundation for the subsequent roboticization of duodenoscope systems for ERCP procedures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信