Marta Terré, Norbert Prat, D. Sabrià, O. Queiroz, Jens N. Joergensen, G. Copani, B. Cappellozza
{"title":"补充基于芽孢杆菌的直接饲喂微生物菌剂可提高泌乳奶牛的饲料效率","authors":"Marta Terré, Norbert Prat, D. Sabrià, O. Queiroz, Jens N. Joergensen, G. Copani, B. Cappellozza","doi":"10.1093/tas/txae110","DOIUrl":null,"url":null,"abstract":"\n This experiment was conducted to evaluate the effects of feeding a Bacillus-based direct-fed microbial (DFM) on performance and nutrient digestibility of lactating dairy cows. Seventy-six lactating (42 ± 6 DIM) Holstein-Friesian primiparous and multiparous cows were enrolled to a 16-wk experiment. Cows were blocked by lactation number and DIM and within blocks, assigned to 1 of the 2 treatments: 1) basal partial mixed ration (PMR) without DFM addition (n = 38; CON) or 2) basal PMR with the addition of 3 g/head per day of a DFM containing B. licheniformis 809 and B. subtilis 810 (n = 38; BOVACILLUS™, Chr. Hansen A/S, Hørsholm, Denmark; DFM). The DFM was mixed in a protein-based pellet, whereas the CON group was fed the same pellet without DFM (0.6 kg/cow per day). The PMR contained (DM basis) 50% of forage and 48% of a concentrate feed based on corn meal, soybean meal, wheat meal, wheat middlings, and a mineral-vitamin premix, with the remaining part of the diet being represented by the pellet used as a carrier for the treatments (CON and DFM). Dry matter intake, milk yield, and production efficiency were recorded daily, whereas milk protein and fat concentrations were recorded using electronic milk meters. An additional milk sample was collected every second week of the study for milk composition. On wk 15 of the study, fecal samples were collected from each cow for apparent nutrient digestibility calculation. All data were analyzed using the MIXED procedure of SAS (version 9.4; SAS Inst. Inc., Cary, NC). No treatment effects were observed on cow final BW, daily DMI, milk yield, ECM, ECM efficiency, milk composition (yield or content), and SCC (P ≥ 0.12). However, cows fed DFM had a greater feed and N efficiency (P ≤ 0.03) compared to cows fed CON. Moreover, DM digestibility tended to be greater for DFM-fed cows when compared to CON (P = 0.10), whereas no further nutrient digestibility differences were observed (P ≥ 0.24). In summary, supplementing a DFM containing Bacillus licheniformis and B. subtilis benefited feed efficiency of lactating dairy cows fed a PMR, while also tending to improve the digestibility of dry matter.","PeriodicalId":23272,"journal":{"name":"Translational Animal Science","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supplementing a Bacillus-based direct-fed microbial improves feed efficiency in lactating dairy cows\",\"authors\":\"Marta Terré, Norbert Prat, D. Sabrià, O. Queiroz, Jens N. Joergensen, G. Copani, B. Cappellozza\",\"doi\":\"10.1093/tas/txae110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This experiment was conducted to evaluate the effects of feeding a Bacillus-based direct-fed microbial (DFM) on performance and nutrient digestibility of lactating dairy cows. Seventy-six lactating (42 ± 6 DIM) Holstein-Friesian primiparous and multiparous cows were enrolled to a 16-wk experiment. Cows were blocked by lactation number and DIM and within blocks, assigned to 1 of the 2 treatments: 1) basal partial mixed ration (PMR) without DFM addition (n = 38; CON) or 2) basal PMR with the addition of 3 g/head per day of a DFM containing B. licheniformis 809 and B. subtilis 810 (n = 38; BOVACILLUS™, Chr. Hansen A/S, Hørsholm, Denmark; DFM). The DFM was mixed in a protein-based pellet, whereas the CON group was fed the same pellet without DFM (0.6 kg/cow per day). The PMR contained (DM basis) 50% of forage and 48% of a concentrate feed based on corn meal, soybean meal, wheat meal, wheat middlings, and a mineral-vitamin premix, with the remaining part of the diet being represented by the pellet used as a carrier for the treatments (CON and DFM). Dry matter intake, milk yield, and production efficiency were recorded daily, whereas milk protein and fat concentrations were recorded using electronic milk meters. An additional milk sample was collected every second week of the study for milk composition. On wk 15 of the study, fecal samples were collected from each cow for apparent nutrient digestibility calculation. All data were analyzed using the MIXED procedure of SAS (version 9.4; SAS Inst. Inc., Cary, NC). No treatment effects were observed on cow final BW, daily DMI, milk yield, ECM, ECM efficiency, milk composition (yield or content), and SCC (P ≥ 0.12). However, cows fed DFM had a greater feed and N efficiency (P ≤ 0.03) compared to cows fed CON. Moreover, DM digestibility tended to be greater for DFM-fed cows when compared to CON (P = 0.10), whereas no further nutrient digestibility differences were observed (P ≥ 0.24). In summary, supplementing a DFM containing Bacillus licheniformis and B. subtilis benefited feed efficiency of lactating dairy cows fed a PMR, while also tending to improve the digestibility of dry matter.\",\"PeriodicalId\":23272,\"journal\":{\"name\":\"Translational Animal Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Animal Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/tas/txae110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Animal Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/tas/txae110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Supplementing a Bacillus-based direct-fed microbial improves feed efficiency in lactating dairy cows
This experiment was conducted to evaluate the effects of feeding a Bacillus-based direct-fed microbial (DFM) on performance and nutrient digestibility of lactating dairy cows. Seventy-six lactating (42 ± 6 DIM) Holstein-Friesian primiparous and multiparous cows were enrolled to a 16-wk experiment. Cows were blocked by lactation number and DIM and within blocks, assigned to 1 of the 2 treatments: 1) basal partial mixed ration (PMR) without DFM addition (n = 38; CON) or 2) basal PMR with the addition of 3 g/head per day of a DFM containing B. licheniformis 809 and B. subtilis 810 (n = 38; BOVACILLUS™, Chr. Hansen A/S, Hørsholm, Denmark; DFM). The DFM was mixed in a protein-based pellet, whereas the CON group was fed the same pellet without DFM (0.6 kg/cow per day). The PMR contained (DM basis) 50% of forage and 48% of a concentrate feed based on corn meal, soybean meal, wheat meal, wheat middlings, and a mineral-vitamin premix, with the remaining part of the diet being represented by the pellet used as a carrier for the treatments (CON and DFM). Dry matter intake, milk yield, and production efficiency were recorded daily, whereas milk protein and fat concentrations were recorded using electronic milk meters. An additional milk sample was collected every second week of the study for milk composition. On wk 15 of the study, fecal samples were collected from each cow for apparent nutrient digestibility calculation. All data were analyzed using the MIXED procedure of SAS (version 9.4; SAS Inst. Inc., Cary, NC). No treatment effects were observed on cow final BW, daily DMI, milk yield, ECM, ECM efficiency, milk composition (yield or content), and SCC (P ≥ 0.12). However, cows fed DFM had a greater feed and N efficiency (P ≤ 0.03) compared to cows fed CON. Moreover, DM digestibility tended to be greater for DFM-fed cows when compared to CON (P = 0.10), whereas no further nutrient digestibility differences were observed (P ≥ 0.24). In summary, supplementing a DFM containing Bacillus licheniformis and B. subtilis benefited feed efficiency of lactating dairy cows fed a PMR, while also tending to improve the digestibility of dry matter.
期刊介绍:
Translational Animal Science (TAS) is the first open access-open review animal science journal, encompassing a broad scope of research topics in animal science. TAS focuses on translating basic science to innovation, and validation of these innovations by various segments of the allied animal industry. Readers of TAS will typically represent education, industry, and government, including research, teaching, administration, extension, management, quality assurance, product development, and technical services. Those interested in TAS typically include animal breeders, economists, embryologists, engineers, food scientists, geneticists, microbiologists, nutritionists, veterinarians, physiologists, processors, public health professionals, and others with an interest in animal production and applied aspects of animal sciences.