基于门递归单元和生成式对抗网络的随机天气模拟

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lingling Han, Xueqian Fu, Xinyue Chang, Yixuan Li, Xiang Bai
{"title":"基于门递归单元和生成式对抗网络的随机天气模拟","authors":"Lingling Han, Xueqian Fu, Xinyue Chang, Yixuan Li, Xiang Bai","doi":"10.1049/pel2.12750","DOIUrl":null,"url":null,"abstract":"The weather has a significant impact on power load and power system planning. Stochastic weather simulation is important in the field of power systems. However, due to factors such as long recording years, observation technology, and so on, the historical weather data often have the problem of missing or insufficient. Meteorological data are characterized by changeable, rapid change, and high dimensions. Therefore, it is a challenging task to accurately grasp the law of weather data. This article presents a random weather simulation model based on gate recurrent unit (GRU) and generative adversarial networks (GAN). GRU selectively learns or forgets what was in the previous moment during training; it can learn the previous and current data of the time series data. When combined with the GAN, it will produce data with the same distribution as the original weather data. The proposed method was evaluated on a real weather dataset, and the results show that the proposed method outperforms the other contrast algorithms.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic weather simulation based on gate recurrent unit and generative adversarial networks\",\"authors\":\"Lingling Han, Xueqian Fu, Xinyue Chang, Yixuan Li, Xiang Bai\",\"doi\":\"10.1049/pel2.12750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The weather has a significant impact on power load and power system planning. Stochastic weather simulation is important in the field of power systems. However, due to factors such as long recording years, observation technology, and so on, the historical weather data often have the problem of missing or insufficient. Meteorological data are characterized by changeable, rapid change, and high dimensions. Therefore, it is a challenging task to accurately grasp the law of weather data. This article presents a random weather simulation model based on gate recurrent unit (GRU) and generative adversarial networks (GAN). GRU selectively learns or forgets what was in the previous moment during training; it can learn the previous and current data of the time series data. When combined with the GAN, it will produce data with the same distribution as the original weather data. The proposed method was evaluated on a real weather dataset, and the results show that the proposed method outperforms the other contrast algorithms.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1049/pel2.12750\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1049/pel2.12750","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

天气对电力负荷和电力系统规划有重大影响。随机天气模拟在电力系统领域具有重要意义。然而,由于记录年限长、观测技术等因素,历史气象数据往往存在缺失或不足的问题。气象数据具有易变、变化快、维度高等特点。因此,准确把握气象数据的规律是一项具有挑战性的任务。本文提出了一种基于门递归单元(GRU)和生成式对抗网络(GAN)的随机天气模拟模型。在训练过程中,GRU 可以选择性地学习或遗忘上一时刻的内容;它可以学习时间序列数据的上一时刻和当前时刻的数据。当与 GAN 结合时,它将生成与原始天气数据分布相同的数据。在真实天气数据集上对所提出的方法进行了评估,结果表明所提出的方法优于其他对比算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic weather simulation based on gate recurrent unit and generative adversarial networks
The weather has a significant impact on power load and power system planning. Stochastic weather simulation is important in the field of power systems. However, due to factors such as long recording years, observation technology, and so on, the historical weather data often have the problem of missing or insufficient. Meteorological data are characterized by changeable, rapid change, and high dimensions. Therefore, it is a challenging task to accurately grasp the law of weather data. This article presents a random weather simulation model based on gate recurrent unit (GRU) and generative adversarial networks (GAN). GRU selectively learns or forgets what was in the previous moment during training; it can learn the previous and current data of the time series data. When combined with the GAN, it will produce data with the same distribution as the original weather data. The proposed method was evaluated on a real weather dataset, and the results show that the proposed method outperforms the other contrast algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信