Yifei Zhang, Dun Zeng, Jinglong Luo, Xinyu Fu, Guanzhong Chen, Zenglin Xu, Irwin King
{"title":"值得信赖的联合学习调查:问题、解决方案和挑战","authors":"Yifei Zhang, Dun Zeng, Jinglong Luo, Xinyu Fu, Guanzhong Chen, Zenglin Xu, Irwin King","doi":"10.1145/3678181","DOIUrl":null,"url":null,"abstract":"\n Trustworthy Artificial Intelligence (TAI) has proven invaluable in curbing potential negative repercussions tied to AI applications. Within the TAI spectrum, Federated Learning (FL) emerges as a promising solution to safeguard personal information in distributed settings across a multitude of practical contexts. However, the realm of FL is not without its challenges. Especially worrisome are adversarial attacks targeting its algorithmic robustness and systemic confidentiality. Moreover, the presence of biases and opacity in prediction outcomes further complicates FL’s broader adoption. Consequently, there is a growing expectation for FL to instill trust. To address this, we chart out a comprehensive road-map for\n Trustworthy Federated Learning (TFL)\n and provide an overview of existing efforts across four pivotal dimensions:\n Privacy & Security\n ,\n Robustness\n ,\n Fairness\n , and\n Explainability\n . For each dimension, we identify potential pitfalls that might undermine TFL and present a curated selection of defensive strategies, enriched by a discourse on technical solutions tailored for TFL. Furthermore, we present potential challenges and future directions to be explored for in-depth TFL research with broader impacts.\n","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey of Trustworthy Federated Learning: Issues, Solutions, and Challenges\",\"authors\":\"Yifei Zhang, Dun Zeng, Jinglong Luo, Xinyu Fu, Guanzhong Chen, Zenglin Xu, Irwin King\",\"doi\":\"10.1145/3678181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Trustworthy Artificial Intelligence (TAI) has proven invaluable in curbing potential negative repercussions tied to AI applications. Within the TAI spectrum, Federated Learning (FL) emerges as a promising solution to safeguard personal information in distributed settings across a multitude of practical contexts. However, the realm of FL is not without its challenges. Especially worrisome are adversarial attacks targeting its algorithmic robustness and systemic confidentiality. Moreover, the presence of biases and opacity in prediction outcomes further complicates FL’s broader adoption. Consequently, there is a growing expectation for FL to instill trust. To address this, we chart out a comprehensive road-map for\\n Trustworthy Federated Learning (TFL)\\n and provide an overview of existing efforts across four pivotal dimensions:\\n Privacy & Security\\n ,\\n Robustness\\n ,\\n Fairness\\n , and\\n Explainability\\n . For each dimension, we identify potential pitfalls that might undermine TFL and present a curated selection of defensive strategies, enriched by a discourse on technical solutions tailored for TFL. Furthermore, we present potential challenges and future directions to be explored for in-depth TFL research with broader impacts.\\n\",\"PeriodicalId\":48967,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3678181\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3678181","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Survey of Trustworthy Federated Learning: Issues, Solutions, and Challenges
Trustworthy Artificial Intelligence (TAI) has proven invaluable in curbing potential negative repercussions tied to AI applications. Within the TAI spectrum, Federated Learning (FL) emerges as a promising solution to safeguard personal information in distributed settings across a multitude of practical contexts. However, the realm of FL is not without its challenges. Especially worrisome are adversarial attacks targeting its algorithmic robustness and systemic confidentiality. Moreover, the presence of biases and opacity in prediction outcomes further complicates FL’s broader adoption. Consequently, there is a growing expectation for FL to instill trust. To address this, we chart out a comprehensive road-map for
Trustworthy Federated Learning (TFL)
and provide an overview of existing efforts across four pivotal dimensions:
Privacy & Security
,
Robustness
,
Fairness
, and
Explainability
. For each dimension, we identify potential pitfalls that might undermine TFL and present a curated selection of defensive strategies, enriched by a discourse on technical solutions tailored for TFL. Furthermore, we present potential challenges and future directions to be explored for in-depth TFL research with broader impacts.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.