Fardin Bahreini, M. Nasrollahi, A. Taher, Amin Hammad
{"title":"基于 BIM 的机器人导航和检测任务本体论","authors":"Fardin Bahreini, M. Nasrollahi, A. Taher, Amin Hammad","doi":"10.3390/buildings14082274","DOIUrl":null,"url":null,"abstract":"The availability of inspection robots in the construction and operation phases of buildings has led to expanding the scope of applications and increasing technological challenges. Furthermore, the building information modeling (BIM)-based approach for robotic inspection is expected to improve the inspection process as the BIM models contain accurate geometry and relevant information at different phases of the lifecycle of a building. Several studies have used BIM for navigation purposes. Also, some studies focused on developing a knowledge-based ontology to perform activities in a robotic environment (e.g., CRAM). However, the research in this area is still limited and fragmented, and there is a need to develop an integrated ontology to be used as a first step towards logic-based inspection. This paper aims to develop an ontology for BIM-based robotic navigation and inspection tasks (OBRNIT). This ontology can help system engineers involved in developing robotic inspection systems by identifying the different concepts and relationships between robotic inspection and navigation tasks based on BIM information. The developed ontology covers four main types of concepts: (1) robot concepts, (2) building concepts, (3) navigation task concepts, and (4) inspection task concepts. The ontology is developed using Protégé. The following steps are taken to reach the objectives: (1) the available literature is reviewed to identify the concepts, (2) the steps for developing OBRNIT are identified, (3) the basic components of the ontology are developed, and (4) the evaluation process is performed for the developed ontology. The semantic representation of OBRNIT was evaluated through a case study and a survey. The evaluation confirms that OBRNIT covers the domain’s concepts and relationships, and can be applied to develop robotic inspection systems. In a case study conducted in a building at Concordia University, OBRNIT was used to support an inspection robot in navigating to identify a ceiling leakage. Survey results from 33 experts indicate that 28.13% strongly agreed and 65.63% agreed on the usage of OBRNIT for the development of robotic navigation and inspection systems. This highlights its potential in enhancing inspection reliability and repeatability, addressing the complexity of interactions within the inspection environment, and supporting the development of more autonomous and efficient robotic inspection systems.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ontology for BIM-Based Robotic Navigation and Inspection Tasks\",\"authors\":\"Fardin Bahreini, M. Nasrollahi, A. Taher, Amin Hammad\",\"doi\":\"10.3390/buildings14082274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability of inspection robots in the construction and operation phases of buildings has led to expanding the scope of applications and increasing technological challenges. Furthermore, the building information modeling (BIM)-based approach for robotic inspection is expected to improve the inspection process as the BIM models contain accurate geometry and relevant information at different phases of the lifecycle of a building. Several studies have used BIM for navigation purposes. Also, some studies focused on developing a knowledge-based ontology to perform activities in a robotic environment (e.g., CRAM). However, the research in this area is still limited and fragmented, and there is a need to develop an integrated ontology to be used as a first step towards logic-based inspection. This paper aims to develop an ontology for BIM-based robotic navigation and inspection tasks (OBRNIT). This ontology can help system engineers involved in developing robotic inspection systems by identifying the different concepts and relationships between robotic inspection and navigation tasks based on BIM information. The developed ontology covers four main types of concepts: (1) robot concepts, (2) building concepts, (3) navigation task concepts, and (4) inspection task concepts. The ontology is developed using Protégé. The following steps are taken to reach the objectives: (1) the available literature is reviewed to identify the concepts, (2) the steps for developing OBRNIT are identified, (3) the basic components of the ontology are developed, and (4) the evaluation process is performed for the developed ontology. The semantic representation of OBRNIT was evaluated through a case study and a survey. The evaluation confirms that OBRNIT covers the domain’s concepts and relationships, and can be applied to develop robotic inspection systems. In a case study conducted in a building at Concordia University, OBRNIT was used to support an inspection robot in navigating to identify a ceiling leakage. Survey results from 33 experts indicate that 28.13% strongly agreed and 65.63% agreed on the usage of OBRNIT for the development of robotic navigation and inspection systems. This highlights its potential in enhancing inspection reliability and repeatability, addressing the complexity of interactions within the inspection environment, and supporting the development of more autonomous and efficient robotic inspection systems.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14082274\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082274","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Ontology for BIM-Based Robotic Navigation and Inspection Tasks
The availability of inspection robots in the construction and operation phases of buildings has led to expanding the scope of applications and increasing technological challenges. Furthermore, the building information modeling (BIM)-based approach for robotic inspection is expected to improve the inspection process as the BIM models contain accurate geometry and relevant information at different phases of the lifecycle of a building. Several studies have used BIM for navigation purposes. Also, some studies focused on developing a knowledge-based ontology to perform activities in a robotic environment (e.g., CRAM). However, the research in this area is still limited and fragmented, and there is a need to develop an integrated ontology to be used as a first step towards logic-based inspection. This paper aims to develop an ontology for BIM-based robotic navigation and inspection tasks (OBRNIT). This ontology can help system engineers involved in developing robotic inspection systems by identifying the different concepts and relationships between robotic inspection and navigation tasks based on BIM information. The developed ontology covers four main types of concepts: (1) robot concepts, (2) building concepts, (3) navigation task concepts, and (4) inspection task concepts. The ontology is developed using Protégé. The following steps are taken to reach the objectives: (1) the available literature is reviewed to identify the concepts, (2) the steps for developing OBRNIT are identified, (3) the basic components of the ontology are developed, and (4) the evaluation process is performed for the developed ontology. The semantic representation of OBRNIT was evaluated through a case study and a survey. The evaluation confirms that OBRNIT covers the domain’s concepts and relationships, and can be applied to develop robotic inspection systems. In a case study conducted in a building at Concordia University, OBRNIT was used to support an inspection robot in navigating to identify a ceiling leakage. Survey results from 33 experts indicate that 28.13% strongly agreed and 65.63% agreed on the usage of OBRNIT for the development of robotic navigation and inspection systems. This highlights its potential in enhancing inspection reliability and repeatability, addressing the complexity of interactions within the inspection environment, and supporting the development of more autonomous and efficient robotic inspection systems.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates