用于流行病预测的大数据分析:政策框架和技术方法

Geneva Tamunobarafiri Igwama, Janet Aderonke Olaboye, Chukwudi Cosmos Maha, Mojeed Dayo Ajegbile, Samira Abdul
{"title":"用于流行病预测的大数据分析:政策框架和技术方法","authors":"Geneva Tamunobarafiri Igwama, Janet Aderonke Olaboye, Chukwudi Cosmos Maha, Mojeed Dayo Ajegbile, Samira Abdul","doi":"10.51594/ijarss.v6i7.1334","DOIUrl":null,"url":null,"abstract":"This review paper explores the intersection of big data analytics and epidemic forecasting, highlighting both technical approaches and policy frameworks. It delves into data collection methods from IoT, mobile data, and social media. It discusses analytical techniques such as machine learning and predictive modelling. The paper also addresses the regulatory and ethical considerations necessary for effective data use, emphasizing the need for adaptive policy frameworks to support innovation. The importance of international collaboration and global initiatives for data integration and sharing is underscored. By integrating advanced analytics with robust policies, the potential for enhanced epidemic forecasting and proactive public health responses is significant. \nKeywords: Big Data Analytics, Epidemic Forecasting, Machine Learning, Public Health Policy, Data Privacy.","PeriodicalId":253743,"journal":{"name":"International Journal of Applied Research in Social Sciences","volume":"136 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Big data analytics for epidemic forecasting: Policy Frameworks and technical approaches\",\"authors\":\"Geneva Tamunobarafiri Igwama, Janet Aderonke Olaboye, Chukwudi Cosmos Maha, Mojeed Dayo Ajegbile, Samira Abdul\",\"doi\":\"10.51594/ijarss.v6i7.1334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review paper explores the intersection of big data analytics and epidemic forecasting, highlighting both technical approaches and policy frameworks. It delves into data collection methods from IoT, mobile data, and social media. It discusses analytical techniques such as machine learning and predictive modelling. The paper also addresses the regulatory and ethical considerations necessary for effective data use, emphasizing the need for adaptive policy frameworks to support innovation. The importance of international collaboration and global initiatives for data integration and sharing is underscored. By integrating advanced analytics with robust policies, the potential for enhanced epidemic forecasting and proactive public health responses is significant. \\nKeywords: Big Data Analytics, Epidemic Forecasting, Machine Learning, Public Health Policy, Data Privacy.\",\"PeriodicalId\":253743,\"journal\":{\"name\":\"International Journal of Applied Research in Social Sciences\",\"volume\":\"136 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Research in Social Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51594/ijarss.v6i7.1334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Research in Social Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51594/ijarss.v6i7.1334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本综述论文探讨了大数据分析与流行病预测的交叉点,重点介绍了技术方法和政策框架。它深入探讨了从物联网、移动数据和社交媒体收集数据的方法。它讨论了机器学习和预测建模等分析技术。论文还讨论了有效使用数据所需的监管和伦理考虑因素,强调需要适应性政策框架来支持创新。文件强调了国际合作和全球倡议对数据整合与共享的重要性。通过将先进的分析技术与稳健的政策相结合,加强流行病预测和积极的公共卫生应对措施的潜力是巨大的。关键词大数据分析 流行病预测 机器学习 公共卫生政策 数据隐私
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Big data analytics for epidemic forecasting: Policy Frameworks and technical approaches
This review paper explores the intersection of big data analytics and epidemic forecasting, highlighting both technical approaches and policy frameworks. It delves into data collection methods from IoT, mobile data, and social media. It discusses analytical techniques such as machine learning and predictive modelling. The paper also addresses the regulatory and ethical considerations necessary for effective data use, emphasizing the need for adaptive policy frameworks to support innovation. The importance of international collaboration and global initiatives for data integration and sharing is underscored. By integrating advanced analytics with robust policies, the potential for enhanced epidemic forecasting and proactive public health responses is significant. Keywords: Big Data Analytics, Epidemic Forecasting, Machine Learning, Public Health Policy, Data Privacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信