Muhammad Javed Iqbal, Inayatullah Soomro, Mumtaz Hussain Mahar
{"title":"利用极坐标网格系统上的 CDS 模型中涉及的 PDE 近似值,在约束和曲率效应下对二嵌段共聚物的圆柱堆积进行再图案化","authors":"Muhammad Javed Iqbal, Inayatullah Soomro, Mumtaz Hussain Mahar","doi":"10.1088/2399-6528/ad66ac","DOIUrl":null,"url":null,"abstract":"\n Soft materials, including diblock copolymers, are advancing nanotechnology due to their unique properties, applications materials include energy harvesting, water sanitation, environmental treatment, nanosensors, drug delivery and nanolithography. These materials are light, cheap, efficient, sensitive, durable and more functional, whose new morphologies have been predicted by mathematicians through simulation. This work produces and predicts the pattern of packing of nano-cylinders by using confinement to appreciate the frustration in the packing of nano-cylinders under the influence of curvature. In this contribution, the cell dynamic simulations model is used to examine the impact of circular annular pore confinement on system orientation toward cylindrical morphologies. A 9-point stencil approximates the isotropic Laplacian by finite-difference discretization on a polar grid to meet the requirement of a cell dynamic simulation model. FORTRAN codes are generated for the set of PDEs included in the CDS model. OPEN DX is used to visualise the predicted cylindrical patterns. The consistency of our results with experimental observations makes our research valid and significant.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"57 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Re-patterning of cylindrical packing of diblock copolymers under confinement and curvature effects by using approximations of PDE’s involved in the CDS model on polar mesh system\",\"authors\":\"Muhammad Javed Iqbal, Inayatullah Soomro, Mumtaz Hussain Mahar\",\"doi\":\"10.1088/2399-6528/ad66ac\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Soft materials, including diblock copolymers, are advancing nanotechnology due to their unique properties, applications materials include energy harvesting, water sanitation, environmental treatment, nanosensors, drug delivery and nanolithography. These materials are light, cheap, efficient, sensitive, durable and more functional, whose new morphologies have been predicted by mathematicians through simulation. This work produces and predicts the pattern of packing of nano-cylinders by using confinement to appreciate the frustration in the packing of nano-cylinders under the influence of curvature. In this contribution, the cell dynamic simulations model is used to examine the impact of circular annular pore confinement on system orientation toward cylindrical morphologies. A 9-point stencil approximates the isotropic Laplacian by finite-difference discretization on a polar grid to meet the requirement of a cell dynamic simulation model. FORTRAN codes are generated for the set of PDEs included in the CDS model. OPEN DX is used to visualise the predicted cylindrical patterns. The consistency of our results with experimental observations makes our research valid and significant.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-6528/ad66ac\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/ad66ac","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Re-patterning of cylindrical packing of diblock copolymers under confinement and curvature effects by using approximations of PDE’s involved in the CDS model on polar mesh system
Soft materials, including diblock copolymers, are advancing nanotechnology due to their unique properties, applications materials include energy harvesting, water sanitation, environmental treatment, nanosensors, drug delivery and nanolithography. These materials are light, cheap, efficient, sensitive, durable and more functional, whose new morphologies have been predicted by mathematicians through simulation. This work produces and predicts the pattern of packing of nano-cylinders by using confinement to appreciate the frustration in the packing of nano-cylinders under the influence of curvature. In this contribution, the cell dynamic simulations model is used to examine the impact of circular annular pore confinement on system orientation toward cylindrical morphologies. A 9-point stencil approximates the isotropic Laplacian by finite-difference discretization on a polar grid to meet the requirement of a cell dynamic simulation model. FORTRAN codes are generated for the set of PDEs included in the CDS model. OPEN DX is used to visualise the predicted cylindrical patterns. The consistency of our results with experimental observations makes our research valid and significant.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.