{"title":"基于强化学习布局的智能家居优化能源管理:基于人工智能的方法","authors":"Sajjad Afroosheh, Khodakhast Esapour, Reza Khorram-Nia, Mazaher Karimi","doi":"10.1049/gtd2.13203","DOIUrl":null,"url":null,"abstract":"<p>This research addresses the pressing need for enhanced energy management in smart homes, motivated by the inefficiencies of current methods in balancing power usage optimization with user comfort. By integrating reinforcement learning and a unique column-and-constraint generation strategy, the study aims to fill this gap and offer a comprehensive solution. Furthermore, the increasing adoption of renewable energy sources like solar panels underscores the importance of developing advanced energy management techniques, driving the exploration of innovative approaches such as the one proposed herein. The constraint coordination game (CCG) method is designed to efficiently manage the power usage of each appliance, including the charging and discharging of the energy storage system. Additionally, a deep learning model, specifically a deep neural network, is employed to forecast indoor temperatures, which significantly influence the energy demands of the air conditioning system. The synergistic combination of the CCG method with deep learning-based indoor temperature forecasting promises significant reductions in homeowner energy expenses while maintaining optimal appliance performance and user satisfaction. Testing conducted in simulated environments demonstrates promising results, showcasing a 12% reduction in energy costs compared to conventional energy management strategies.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13203","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning layout-based optimal energy management in smart home: AI-based approach\",\"authors\":\"Sajjad Afroosheh, Khodakhast Esapour, Reza Khorram-Nia, Mazaher Karimi\",\"doi\":\"10.1049/gtd2.13203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research addresses the pressing need for enhanced energy management in smart homes, motivated by the inefficiencies of current methods in balancing power usage optimization with user comfort. By integrating reinforcement learning and a unique column-and-constraint generation strategy, the study aims to fill this gap and offer a comprehensive solution. Furthermore, the increasing adoption of renewable energy sources like solar panels underscores the importance of developing advanced energy management techniques, driving the exploration of innovative approaches such as the one proposed herein. The constraint coordination game (CCG) method is designed to efficiently manage the power usage of each appliance, including the charging and discharging of the energy storage system. Additionally, a deep learning model, specifically a deep neural network, is employed to forecast indoor temperatures, which significantly influence the energy demands of the air conditioning system. The synergistic combination of the CCG method with deep learning-based indoor temperature forecasting promises significant reductions in homeowner energy expenses while maintaining optimal appliance performance and user satisfaction. Testing conducted in simulated environments demonstrates promising results, showcasing a 12% reduction in energy costs compared to conventional energy management strategies.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13203\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13203\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13203","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Reinforcement learning layout-based optimal energy management in smart home: AI-based approach
This research addresses the pressing need for enhanced energy management in smart homes, motivated by the inefficiencies of current methods in balancing power usage optimization with user comfort. By integrating reinforcement learning and a unique column-and-constraint generation strategy, the study aims to fill this gap and offer a comprehensive solution. Furthermore, the increasing adoption of renewable energy sources like solar panels underscores the importance of developing advanced energy management techniques, driving the exploration of innovative approaches such as the one proposed herein. The constraint coordination game (CCG) method is designed to efficiently manage the power usage of each appliance, including the charging and discharging of the energy storage system. Additionally, a deep learning model, specifically a deep neural network, is employed to forecast indoor temperatures, which significantly influence the energy demands of the air conditioning system. The synergistic combination of the CCG method with deep learning-based indoor temperature forecasting promises significant reductions in homeowner energy expenses while maintaining optimal appliance performance and user satisfaction. Testing conducted in simulated environments demonstrates promising results, showcasing a 12% reduction in energy costs compared to conventional energy management strategies.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf