Junhua Chen, Yuzhi Nie, Guan Lian, Aijun Chen, Siqi Pu, Jinfeng Zou, Jiasheng Zhang, Xiong Shi, Di Wu, Bai Yang
{"title":"厚垫层与刚性桩复合地基的加固特性研究","authors":"Junhua Chen, Yuzhi Nie, Guan Lian, Aijun Chen, Siqi Pu, Jinfeng Zou, Jiasheng Zhang, Xiong Shi, Di Wu, Bai Yang","doi":"10.3390/buildings14082286","DOIUrl":null,"url":null,"abstract":"The rigid pile composite foundation method is the most commonly used method for strengthening weak soil foundations. In this method, piles usually need to pass through weak soil layers, and the pile end falls on a bearing layer with good bearing capacity. Under existing technical conditions, the thicker the weak soil layer, the longer the pile body, and the more difficult it is to ensure the construction quality of the pile. In response to this issue, some scholars have adopted the rigid pile composite foundation method with a thick cushion layer for reinforcement treatment. This article uses PLAXIS 3D (V20.04.00.790) software to establish a finite element model of rigid pile composite foundation with a thick cushion layer and simulate the process of foundation reinforcement. The influence of parameters such as thickness, compression modulus, and shear strength index of the cushion layer on foundation settlement and pile–soil stress distribution is studied, and the reasonable range of these parameters is analyzed under the condition of considering reinforcement effect. Through comparative analysis, it can be concluded that for deep and weak soil areas, the thickness of the cushion layer can range from 0.5 to 2.6. The thickness and compressive modulus of the cushion layer have a significant impact on the settlement of the foundation, the pile–soil stress ratio, and the stress of the pile body, while the shear strength index of the cushion layer has a relatively small impact on these parameters. Reasonably selecting the geometric and mechanical parameters of the cushion layer can effectively reduce stress concentration at the pile top and better play the role of the soil between piles.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Reinforcement Characteristics of Thick Cushion Layer and Rigid Pile Composite Foundation\",\"authors\":\"Junhua Chen, Yuzhi Nie, Guan Lian, Aijun Chen, Siqi Pu, Jinfeng Zou, Jiasheng Zhang, Xiong Shi, Di Wu, Bai Yang\",\"doi\":\"10.3390/buildings14082286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rigid pile composite foundation method is the most commonly used method for strengthening weak soil foundations. In this method, piles usually need to pass through weak soil layers, and the pile end falls on a bearing layer with good bearing capacity. Under existing technical conditions, the thicker the weak soil layer, the longer the pile body, and the more difficult it is to ensure the construction quality of the pile. In response to this issue, some scholars have adopted the rigid pile composite foundation method with a thick cushion layer for reinforcement treatment. This article uses PLAXIS 3D (V20.04.00.790) software to establish a finite element model of rigid pile composite foundation with a thick cushion layer and simulate the process of foundation reinforcement. The influence of parameters such as thickness, compression modulus, and shear strength index of the cushion layer on foundation settlement and pile–soil stress distribution is studied, and the reasonable range of these parameters is analyzed under the condition of considering reinforcement effect. Through comparative analysis, it can be concluded that for deep and weak soil areas, the thickness of the cushion layer can range from 0.5 to 2.6. The thickness and compressive modulus of the cushion layer have a significant impact on the settlement of the foundation, the pile–soil stress ratio, and the stress of the pile body, while the shear strength index of the cushion layer has a relatively small impact on these parameters. Reasonably selecting the geometric and mechanical parameters of the cushion layer can effectively reduce stress concentration at the pile top and better play the role of the soil between piles.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14082286\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082286","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Research on the Reinforcement Characteristics of Thick Cushion Layer and Rigid Pile Composite Foundation
The rigid pile composite foundation method is the most commonly used method for strengthening weak soil foundations. In this method, piles usually need to pass through weak soil layers, and the pile end falls on a bearing layer with good bearing capacity. Under existing technical conditions, the thicker the weak soil layer, the longer the pile body, and the more difficult it is to ensure the construction quality of the pile. In response to this issue, some scholars have adopted the rigid pile composite foundation method with a thick cushion layer for reinforcement treatment. This article uses PLAXIS 3D (V20.04.00.790) software to establish a finite element model of rigid pile composite foundation with a thick cushion layer and simulate the process of foundation reinforcement. The influence of parameters such as thickness, compression modulus, and shear strength index of the cushion layer on foundation settlement and pile–soil stress distribution is studied, and the reasonable range of these parameters is analyzed under the condition of considering reinforcement effect. Through comparative analysis, it can be concluded that for deep and weak soil areas, the thickness of the cushion layer can range from 0.5 to 2.6. The thickness and compressive modulus of the cushion layer have a significant impact on the settlement of the foundation, the pile–soil stress ratio, and the stress of the pile body, while the shear strength index of the cushion layer has a relatively small impact on these parameters. Reasonably selecting the geometric and mechanical parameters of the cushion layer can effectively reduce stress concentration at the pile top and better play the role of the soil between piles.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates