循环冲击载荷下红色砂岩孔隙结构和分形特征的演变

Huanhuan Qiao, Peng Wang, Zhen Jiang, Yao Liu, Guanglin Tian, Bokun Zhao
{"title":"循环冲击载荷下红色砂岩孔隙结构和分形特征的演变","authors":"Huanhuan Qiao, Peng Wang, Zhen Jiang, Yao Liu, Guanglin Tian, Bokun Zhao","doi":"10.3390/fractalfract8080437","DOIUrl":null,"url":null,"abstract":"Fatigue damage can occur in surface rock engineering due to various factors, including earthquakes, blasting, and impacts. The underlying cause for the variations in physical and mechanical properties of the rock resulting from impact loading is the alteration in the internal pore structure. To investigate the evolution characteristics of the pore structure under impact fatigue damage, red sandstone subjected to cyclic impact compression by split Hopkinson pressure bar (SHPB) was analyzed using nuclear magnetic resonance (NMR) technology. The parameters describing the evolution of pore structure were obtained and quantified using fractal methods. The development of the pore structure in rocks subjected to cyclic impact was quantitatively analyzed, and two fractal evolution models based on pore size and pore connectivity were constructed. The results indicate that with an increasing number of impact loading cycles, the porosity of the red sandstone gradually increases, the T2 cutoff (T2c) value decreases, the most probable gray value of magnetic resonance imaging (MRI) increases, the pores’ connectivity is enhanced, and the fractal dimension decreases gradually. Moreover, the pore distribution space tends to transition from three-dimensional to two-dimensional, suggesting the expansion of dominant pores into clusters, forming microfractures or even macroscopic fissures. The findings provide valuable insights into the impact fatigue characteristics of rocks from a microscopic perspective and contribute to the evaluation of time-varying stability and the assessment of progressive damage in rock engineering.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"38 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of Pore Structure and Fractal Characteristics in Red Sandstone under Cyclic Impact Loading\",\"authors\":\"Huanhuan Qiao, Peng Wang, Zhen Jiang, Yao Liu, Guanglin Tian, Bokun Zhao\",\"doi\":\"10.3390/fractalfract8080437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fatigue damage can occur in surface rock engineering due to various factors, including earthquakes, blasting, and impacts. The underlying cause for the variations in physical and mechanical properties of the rock resulting from impact loading is the alteration in the internal pore structure. To investigate the evolution characteristics of the pore structure under impact fatigue damage, red sandstone subjected to cyclic impact compression by split Hopkinson pressure bar (SHPB) was analyzed using nuclear magnetic resonance (NMR) technology. The parameters describing the evolution of pore structure were obtained and quantified using fractal methods. The development of the pore structure in rocks subjected to cyclic impact was quantitatively analyzed, and two fractal evolution models based on pore size and pore connectivity were constructed. The results indicate that with an increasing number of impact loading cycles, the porosity of the red sandstone gradually increases, the T2 cutoff (T2c) value decreases, the most probable gray value of magnetic resonance imaging (MRI) increases, the pores’ connectivity is enhanced, and the fractal dimension decreases gradually. Moreover, the pore distribution space tends to transition from three-dimensional to two-dimensional, suggesting the expansion of dominant pores into clusters, forming microfractures or even macroscopic fissures. The findings provide valuable insights into the impact fatigue characteristics of rocks from a microscopic perspective and contribute to the evaluation of time-varying stability and the assessment of progressive damage in rock engineering.\",\"PeriodicalId\":510138,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"38 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8080437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8080437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于地震、爆破和撞击等各种因素,表层岩石工程可能会出现疲劳破坏。冲击荷载导致岩石物理和机械性能变化的根本原因是内部孔隙结构的改变。为了研究冲击疲劳破坏下孔隙结构的演变特征,使用核磁共振(NMR)技术分析了受到分体式霍普金森压力棒(SHPB)循环冲击压缩的红砂岩。利用分形方法获得并量化了描述孔隙结构演变的参数。定量分析了受到循环冲击的岩石中孔隙结构的发展,并构建了基于孔隙大小和孔隙连通性的两种分形演化模型。结果表明,随着冲击载荷循环次数的增加,红砂岩的孔隙率逐渐增大,T2截止值(T2c)减小,磁共振成像(MRI)最可能灰度值增大,孔隙连通性增强,分形维数逐渐减小。此外,孔隙分布空间趋于从三维过渡到二维,表明优势孔隙扩展成团,形成微裂缝甚至宏观裂缝。研究结果为从微观角度了解岩石的冲击疲劳特性提供了宝贵的见解,有助于岩石工程中的时变稳定性评估和渐进损伤评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of Pore Structure and Fractal Characteristics in Red Sandstone under Cyclic Impact Loading
Fatigue damage can occur in surface rock engineering due to various factors, including earthquakes, blasting, and impacts. The underlying cause for the variations in physical and mechanical properties of the rock resulting from impact loading is the alteration in the internal pore structure. To investigate the evolution characteristics of the pore structure under impact fatigue damage, red sandstone subjected to cyclic impact compression by split Hopkinson pressure bar (SHPB) was analyzed using nuclear magnetic resonance (NMR) technology. The parameters describing the evolution of pore structure were obtained and quantified using fractal methods. The development of the pore structure in rocks subjected to cyclic impact was quantitatively analyzed, and two fractal evolution models based on pore size and pore connectivity were constructed. The results indicate that with an increasing number of impact loading cycles, the porosity of the red sandstone gradually increases, the T2 cutoff (T2c) value decreases, the most probable gray value of magnetic resonance imaging (MRI) increases, the pores’ connectivity is enhanced, and the fractal dimension decreases gradually. Moreover, the pore distribution space tends to transition from three-dimensional to two-dimensional, suggesting the expansion of dominant pores into clusters, forming microfractures or even macroscopic fissures. The findings provide valuable insights into the impact fatigue characteristics of rocks from a microscopic perspective and contribute to the evaluation of time-varying stability and the assessment of progressive damage in rock engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信