Zoe Adria Kane, Matthew P. Duda, Brigitte Simmatis, J. Smol
{"title":"海鸟输入驱动淡水池塘中桡足类生物群落的变化","authors":"Zoe Adria Kane, Matthew P. Duda, Brigitte Simmatis, J. Smol","doi":"10.1139/cjfas-2024-0063","DOIUrl":null,"url":null,"abstract":"Seabirds are biovectors that transport large concentrations of nutrients from their marine feeding areas to terrestrial breeding grounds. Here, we used subfossil cladoceran assemblages to assess if, and how, changes in the world’s largest colony of Leach’s Storm Petrels affected the structure of Cladocera assemblages over the past ~1700 years. Using sediment cores from four ponds impacted by Leach’s Storm-Petrel colonies on Baccalieu Island (NL, Canada), we observed a consistent transition in cladoceran assemblages from benthic/littoral to pelagic taxa in association with high seabird presence. This shift aligns with previously published limnological changes that tracked the growth of the colony. Compared to trends in sedimentary chlorophyll-a, pelagic cladoceran taxa lagged behind algal shifts driven by seabird activity. The main drivers of cladoceran assemblage shifts were likely alterations to the physical habitat structure and food availability driven by seabird inputs. Furthermore, deposition of calcium from seabirds may have also contributed to changing the composition of cladoceran communities. Our study provides information on food web shifts associated with seabird-driven eutrophication, which can be compared to future paleoecological studies.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"43 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seabird inputs drive changes in Cladocera assemblages in freshwater ponds\",\"authors\":\"Zoe Adria Kane, Matthew P. Duda, Brigitte Simmatis, J. Smol\",\"doi\":\"10.1139/cjfas-2024-0063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seabirds are biovectors that transport large concentrations of nutrients from their marine feeding areas to terrestrial breeding grounds. Here, we used subfossil cladoceran assemblages to assess if, and how, changes in the world’s largest colony of Leach’s Storm Petrels affected the structure of Cladocera assemblages over the past ~1700 years. Using sediment cores from four ponds impacted by Leach’s Storm-Petrel colonies on Baccalieu Island (NL, Canada), we observed a consistent transition in cladoceran assemblages from benthic/littoral to pelagic taxa in association with high seabird presence. This shift aligns with previously published limnological changes that tracked the growth of the colony. Compared to trends in sedimentary chlorophyll-a, pelagic cladoceran taxa lagged behind algal shifts driven by seabird activity. The main drivers of cladoceran assemblage shifts were likely alterations to the physical habitat structure and food availability driven by seabird inputs. Furthermore, deposition of calcium from seabirds may have also contributed to changing the composition of cladoceran communities. Our study provides information on food web shifts associated with seabird-driven eutrophication, which can be compared to future paleoecological studies.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1139/cjfas-2024-0063\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjfas-2024-0063","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Seabird inputs drive changes in Cladocera assemblages in freshwater ponds
Seabirds are biovectors that transport large concentrations of nutrients from their marine feeding areas to terrestrial breeding grounds. Here, we used subfossil cladoceran assemblages to assess if, and how, changes in the world’s largest colony of Leach’s Storm Petrels affected the structure of Cladocera assemblages over the past ~1700 years. Using sediment cores from four ponds impacted by Leach’s Storm-Petrel colonies on Baccalieu Island (NL, Canada), we observed a consistent transition in cladoceran assemblages from benthic/littoral to pelagic taxa in association with high seabird presence. This shift aligns with previously published limnological changes that tracked the growth of the colony. Compared to trends in sedimentary chlorophyll-a, pelagic cladoceran taxa lagged behind algal shifts driven by seabird activity. The main drivers of cladoceran assemblage shifts were likely alterations to the physical habitat structure and food availability driven by seabird inputs. Furthermore, deposition of calcium from seabirds may have also contributed to changing the composition of cladoceran communities. Our study provides information on food web shifts associated with seabird-driven eutrophication, which can be compared to future paleoecological studies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.