基于人工神经网络的空气动力学数据集生成非线性替代模型设计

IF 2.1 3区 工程技术 Q2 ENGINEERING, AEROSPACE
Guillermo Suarez , Emre Özkaya , Nicolas R. Gauger , Hans-Jörg Steiner , Michael Schäfer Schäfer , David Naumann
{"title":"基于人工神经网络的空气动力学数据集生成非线性替代模型设计","authors":"Guillermo Suarez , Emre Özkaya , Nicolas R. Gauger , Hans-Jörg Steiner , Michael Schäfer Schäfer , David Naumann","doi":"10.3390/aerospace11080607","DOIUrl":null,"url":null,"abstract":"In this work we construct a surrogate model using artificial neural networks (ANN) to predict the steady-state behavior of an unmanned combat aircraft. We employ various strategies to improve the model’s accuracy, including the consideration of design tolerances, creating independent surrogate models for the different flow regimes and encoding non-numeric input features. We also explore alternative machine learning models, albeit they demonstrated a lower reliability than ANNs. Two scenarios are considered for the target variable: one focusing solely on predicting the pitching moment coefficient, and the other incorporating the roll moment coefficient as well. We investigate different methods for handling multiple targets, finding that constructing a single model with multiple outputs consistently outperforms developing separate models for each target variable. Overall, the ANN provides predictions that show excellent agreement with the experimental data, demonstrating its effectiveness and reliability in aerodynamic modeling.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Surrogate Model Design for Aerodynamic Dataset Generation Based on Artificial Neural Networks\",\"authors\":\"Guillermo Suarez , Emre Özkaya , Nicolas R. Gauger , Hans-Jörg Steiner , Michael Schäfer Schäfer , David Naumann\",\"doi\":\"10.3390/aerospace11080607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we construct a surrogate model using artificial neural networks (ANN) to predict the steady-state behavior of an unmanned combat aircraft. We employ various strategies to improve the model’s accuracy, including the consideration of design tolerances, creating independent surrogate models for the different flow regimes and encoding non-numeric input features. We also explore alternative machine learning models, albeit they demonstrated a lower reliability than ANNs. Two scenarios are considered for the target variable: one focusing solely on predicting the pitching moment coefficient, and the other incorporating the roll moment coefficient as well. We investigate different methods for handling multiple targets, finding that constructing a single model with multiple outputs consistently outperforms developing separate models for each target variable. Overall, the ANN provides predictions that show excellent agreement with the experimental data, demonstrating its effectiveness and reliability in aerodynamic modeling.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11080607\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11080607","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们利用人工神经网络(ANN)构建了一个代用模型,用于预测无人作战飞机的稳态行为。我们采用了各种策略来提高模型的准确性,包括考虑设计公差、为不同的流动状态创建独立的代用模型以及对非数字输入特征进行编码。我们还探索了其他机器学习模型,尽管这些模型的可靠性低于 ANN。对于目标变量,我们考虑了两种方案:一种方案只侧重于预测俯仰力矩系数,另一种方案则同时包含滚动力矩系数。我们研究了处理多个目标的不同方法,发现构建具有多个输出的单一模型始终优于为每个目标变量开发单独的模型。总之,ANN 提供的预测结果与实验数据非常吻合,证明了其在空气动力学建模中的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Surrogate Model Design for Aerodynamic Dataset Generation Based on Artificial Neural Networks
In this work we construct a surrogate model using artificial neural networks (ANN) to predict the steady-state behavior of an unmanned combat aircraft. We employ various strategies to improve the model’s accuracy, including the consideration of design tolerances, creating independent surrogate models for the different flow regimes and encoding non-numeric input features. We also explore alternative machine learning models, albeit they demonstrated a lower reliability than ANNs. Two scenarios are considered for the target variable: one focusing solely on predicting the pitching moment coefficient, and the other incorporating the roll moment coefficient as well. We investigate different methods for handling multiple targets, finding that constructing a single model with multiple outputs consistently outperforms developing separate models for each target variable. Overall, the ANN provides predictions that show excellent agreement with the experimental data, demonstrating its effectiveness and reliability in aerodynamic modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace
Aerospace ENGINEERING, AEROSPACE-
CiteScore
3.40
自引率
23.10%
发文量
661
审稿时长
6 weeks
期刊介绍: Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信