基于 ARIMA-RBF 的南沙港集装箱吞吐量预测

Wenxian Wang, Jian Zhang
{"title":"基于 ARIMA-RBF 的南沙港集装箱吞吐量预测","authors":"Wenxian Wang, Jian Zhang","doi":"10.54691/m3s4aa70","DOIUrl":null,"url":null,"abstract":"Predicting container throughput is fundamental for port management and the scheduling of handling equipment. Based on an analysis of the mechanisms of the ARIMA model and the RBF model, this paper investigates the daily container throughput patterns and data stationarity characteristics of Nansha Port in Guangzhou, using survey results. By integrating the time series forecasting capability of the ARIMA model with the nonlinear processing ability of the RBF neural network, an ARIMA-RBF combined forecasting model is established to predict the container throughput of Nansha Port. This model accounts for both the linear and nonlinear characteristics of port container throughput and demonstrates superior predictive performance compared to the traditional ARIMA forecasting model.","PeriodicalId":339874,"journal":{"name":"Frontiers in Humanities and Social Sciences","volume":"89 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Container throughput forecasting of Nansha Port based on ARIMA-RBF\",\"authors\":\"Wenxian Wang, Jian Zhang\",\"doi\":\"10.54691/m3s4aa70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting container throughput is fundamental for port management and the scheduling of handling equipment. Based on an analysis of the mechanisms of the ARIMA model and the RBF model, this paper investigates the daily container throughput patterns and data stationarity characteristics of Nansha Port in Guangzhou, using survey results. By integrating the time series forecasting capability of the ARIMA model with the nonlinear processing ability of the RBF neural network, an ARIMA-RBF combined forecasting model is established to predict the container throughput of Nansha Port. This model accounts for both the linear and nonlinear characteristics of port container throughput and demonstrates superior predictive performance compared to the traditional ARIMA forecasting model.\",\"PeriodicalId\":339874,\"journal\":{\"name\":\"Frontiers in Humanities and Social Sciences\",\"volume\":\"89 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Humanities and Social Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54691/m3s4aa70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Humanities and Social Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54691/m3s4aa70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测集装箱吞吐量是港口管理和装卸设备调度的基础。本文在分析 ARIMA 模型和 RBF 模型机理的基础上,利用调查结果研究了广州南沙港集装箱日吞吐量的变化规律和数据静态特征。通过将 ARIMA 模型的时间序列预测能力与 RBF 神经网络的非线性处理能力相结合,建立了 ARIMA-RBF 组合预测模型来预测南沙港的集装箱吞吐量。该模型同时考虑了港口集装箱吞吐量的线性和非线性特征,与传统的 ARIMA 预测模型相比,具有更优越的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Container throughput forecasting of Nansha Port based on ARIMA-RBF
Predicting container throughput is fundamental for port management and the scheduling of handling equipment. Based on an analysis of the mechanisms of the ARIMA model and the RBF model, this paper investigates the daily container throughput patterns and data stationarity characteristics of Nansha Port in Guangzhou, using survey results. By integrating the time series forecasting capability of the ARIMA model with the nonlinear processing ability of the RBF neural network, an ARIMA-RBF combined forecasting model is established to predict the container throughput of Nansha Port. This model accounts for both the linear and nonlinear characteristics of port container throughput and demonstrates superior predictive performance compared to the traditional ARIMA forecasting model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信