Clint Eldrick Rey Petilla, Catherine Joy Dela Cruz, C. L. Mahinay
{"title":"Si(1-x)-C(x) 的机械特性:使用 LAMMPS 分子动力学模拟材料的强度和刚度","authors":"Clint Eldrick Rey Petilla, Catherine Joy Dela Cruz, C. L. Mahinay","doi":"10.35848/1347-4065/ad66d7","DOIUrl":null,"url":null,"abstract":"\n This study investigated the mechanical properties (elastic modulus, tensile strength, yield strength, and toughness) of different percent C of Silicon Carbide (SiC) using molecular dynamics simulations via the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) with the uniaxial tensile test at four strain rates: 0.1, 0.5, 1.0, and 5.0 m/s, using the Tersoff potential. The simulation uses 20×20×20 atoms (108.6Å×108.6Å×108.6Å) of diamond cubic structure of Si, then carbon atoms were placed randomly at 5% intervals from 0-50 percent C. Results show improved mechanical properties when increasing percent C until peaking at 25%, before decreasing. This is caused by the shortest bond length at 25 percent C from the increase of Si=C using the Radial Distribution Function analysis. Increasing the strain rate generally improves the mechanical properties of the material. The deformation mechanism shows that increasing (decreasing) strain rate generally results in multiple (lesser) failure points with a ductile (brittle) fracture mode.","PeriodicalId":505044,"journal":{"name":"Japanese Journal of Applied Physics","volume":"45 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical properties of Si(1-x)-C(x): strength and stiffness of materials using LAMMPS molecular dynamics simulation\",\"authors\":\"Clint Eldrick Rey Petilla, Catherine Joy Dela Cruz, C. L. Mahinay\",\"doi\":\"10.35848/1347-4065/ad66d7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study investigated the mechanical properties (elastic modulus, tensile strength, yield strength, and toughness) of different percent C of Silicon Carbide (SiC) using molecular dynamics simulations via the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) with the uniaxial tensile test at four strain rates: 0.1, 0.5, 1.0, and 5.0 m/s, using the Tersoff potential. The simulation uses 20×20×20 atoms (108.6Å×108.6Å×108.6Å) of diamond cubic structure of Si, then carbon atoms were placed randomly at 5% intervals from 0-50 percent C. Results show improved mechanical properties when increasing percent C until peaking at 25%, before decreasing. This is caused by the shortest bond length at 25 percent C from the increase of Si=C using the Radial Distribution Function analysis. Increasing the strain rate generally improves the mechanical properties of the material. The deformation mechanism shows that increasing (decreasing) strain rate generally results in multiple (lesser) failure points with a ductile (brittle) fracture mode.\",\"PeriodicalId\":505044,\"journal\":{\"name\":\"Japanese Journal of Applied Physics\",\"volume\":\"45 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35848/1347-4065/ad66d7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad66d7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究通过大规模原子/分子大规模并行模拟器(LAMMPS)进行分子动力学模拟,在四种应变速率下进行单轴拉伸试验,研究了不同百分比 C 的碳化硅(SiC)的机械性能(弹性模量、拉伸强度、屈服强度和韧性):0.1、0.5、1.0 和 5.0 m/s。模拟使用了 20×20×20 个原子(108.6 Å×108.6Å×108.6Å)的硅金刚石立方结构,然后在 0-50% C 之间以 5%的间隔随机放置碳原子。这是由于使用径向分布函数分析,Si=C 的增加使 25% C 时的键长最短。提高应变速率通常会改善材料的机械性能。变形机理表明,应变速率的增加(减小)通常会导致多个(较少)具有韧性(脆性)断裂模式的失效点。
Mechanical properties of Si(1-x)-C(x): strength and stiffness of materials using LAMMPS molecular dynamics simulation
This study investigated the mechanical properties (elastic modulus, tensile strength, yield strength, and toughness) of different percent C of Silicon Carbide (SiC) using molecular dynamics simulations via the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) with the uniaxial tensile test at four strain rates: 0.1, 0.5, 1.0, and 5.0 m/s, using the Tersoff potential. The simulation uses 20×20×20 atoms (108.6Å×108.6Å×108.6Å) of diamond cubic structure of Si, then carbon atoms were placed randomly at 5% intervals from 0-50 percent C. Results show improved mechanical properties when increasing percent C until peaking at 25%, before decreasing. This is caused by the shortest bond length at 25 percent C from the increase of Si=C using the Radial Distribution Function analysis. Increasing the strain rate generally improves the mechanical properties of the material. The deformation mechanism shows that increasing (decreasing) strain rate generally results in multiple (lesser) failure points with a ductile (brittle) fracture mode.