{"title":"利用 SCAPS 1D 研究和优化基于 Cs2TiBr6 和 MASnBr3 两种吸收材料的新型 Perovskite 太阳能电池结构","authors":"K. Dris, Mostefa Benhaliliba","doi":"10.3311/ppch.36825","DOIUrl":null,"url":null,"abstract":"The main objective of this study is to optimize the photovoltaic parameters of a new perovskite solar cell structure (PSC) suggested, using the simulator solar cell capacitance simulator-one dimension (SCAPS-1D) which aims to improve its performance by adjusting different key variables. This new suggested cell which consists of six materials represents the major innovation point of our research, it is distinguished by a double active layer, composed of the two-cesium titanium hexabromide (Cs2TiBr6) and methylammonium tin tribromide (MASnBr3) perovskites. Using the SCAPS 1D software, the simulation allows to determine the optimal values of the various parameters to maximize the efficiency of the PSC. First, the effect of the thickness and defect densities of both Cs2TiBr6 and MASnBr3 materials on the output parameters was studied as well as the defect density in the interfaces. Subsequently, the doping density in Cs2TiBr6 and MASnBr3 was also optimized. Finally, the impact of temperature, series resistance and shunt resistance were evidenced. The results indicate that precise adjustments of these parameters can lead to significant improvements in photovoltaic performance, such as open circuit voltage of 1.105 V, short-circuit current density of 33.90 mA cm−2, fill factor of 88.01% and power conversion efficiency (PCE) 32.96%. These performances were obtained for a thickness of 700 nm for Cs2TiBr6 and 900 nm for MASnBr3, a defect density of 1014 cm−3 for each absorber layer, a defect density of 1014 cm−2 for each interface and a doping density of the order of 1018 cm−3 for each absorbent layer.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study and Optimization of a New Perovskite Solar Cell Structure Based on the Two Absorber Materials Cs2TiBr6 and MASnBr3 Using SCAPS 1D\",\"authors\":\"K. Dris, Mostefa Benhaliliba\",\"doi\":\"10.3311/ppch.36825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this study is to optimize the photovoltaic parameters of a new perovskite solar cell structure (PSC) suggested, using the simulator solar cell capacitance simulator-one dimension (SCAPS-1D) which aims to improve its performance by adjusting different key variables. This new suggested cell which consists of six materials represents the major innovation point of our research, it is distinguished by a double active layer, composed of the two-cesium titanium hexabromide (Cs2TiBr6) and methylammonium tin tribromide (MASnBr3) perovskites. Using the SCAPS 1D software, the simulation allows to determine the optimal values of the various parameters to maximize the efficiency of the PSC. First, the effect of the thickness and defect densities of both Cs2TiBr6 and MASnBr3 materials on the output parameters was studied as well as the defect density in the interfaces. Subsequently, the doping density in Cs2TiBr6 and MASnBr3 was also optimized. Finally, the impact of temperature, series resistance and shunt resistance were evidenced. The results indicate that precise adjustments of these parameters can lead to significant improvements in photovoltaic performance, such as open circuit voltage of 1.105 V, short-circuit current density of 33.90 mA cm−2, fill factor of 88.01% and power conversion efficiency (PCE) 32.96%. These performances were obtained for a thickness of 700 nm for Cs2TiBr6 and 900 nm for MASnBr3, a defect density of 1014 cm−3 for each absorber layer, a defect density of 1014 cm−2 for each interface and a doping density of the order of 1018 cm−3 for each absorbent layer.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppch.36825\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppch.36825","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Study and Optimization of a New Perovskite Solar Cell Structure Based on the Two Absorber Materials Cs2TiBr6 and MASnBr3 Using SCAPS 1D
The main objective of this study is to optimize the photovoltaic parameters of a new perovskite solar cell structure (PSC) suggested, using the simulator solar cell capacitance simulator-one dimension (SCAPS-1D) which aims to improve its performance by adjusting different key variables. This new suggested cell which consists of six materials represents the major innovation point of our research, it is distinguished by a double active layer, composed of the two-cesium titanium hexabromide (Cs2TiBr6) and methylammonium tin tribromide (MASnBr3) perovskites. Using the SCAPS 1D software, the simulation allows to determine the optimal values of the various parameters to maximize the efficiency of the PSC. First, the effect of the thickness and defect densities of both Cs2TiBr6 and MASnBr3 materials on the output parameters was studied as well as the defect density in the interfaces. Subsequently, the doping density in Cs2TiBr6 and MASnBr3 was also optimized. Finally, the impact of temperature, series resistance and shunt resistance were evidenced. The results indicate that precise adjustments of these parameters can lead to significant improvements in photovoltaic performance, such as open circuit voltage of 1.105 V, short-circuit current density of 33.90 mA cm−2, fill factor of 88.01% and power conversion efficiency (PCE) 32.96%. These performances were obtained for a thickness of 700 nm for Cs2TiBr6 and 900 nm for MASnBr3, a defect density of 1014 cm−3 for each absorber layer, a defect density of 1014 cm−2 for each interface and a doping density of the order of 1018 cm−3 for each absorbent layer.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.