{"title":"基于风洞试验数据的矩形建筑风荷载计算程序,用于初步结构设计","authors":"Dong-Hyeon Shin, Young-cheol Ha","doi":"10.3390/buildings14082294","DOIUrl":null,"url":null,"abstract":"In this study, we developed a wind load calculation program (WCP) capable of predicting wind loads with relative precision during the preliminary design phase. First, wind tunnel tests were conducted to identify the essential factors necessary for calculating wind loads and the variables influencing these factors. Square building shapes were considered, and the wind force coefficients and power spectral density were measured by combining four ground roughness values, eleven side ratios (D/B), four aspect ratios (H/BD), and wind directions ranging from 0° to 90°. The wind power coefficient and the spectral coefficient were formulated so that the wind load could be calculated according to various conditions. The WCP computations were based on the calculation of the load combination coefficient using the resonant wind load. Finally, the wind loads obtained from the wind tunnel tests were compared with those predicted by the WCP using an actual project model (inner-core (A) and outer-core (B) types). Building A yielded similar WCP and wind tunnel experimental responses when subjected to wind and laminar wind loads. Additionally, Building B yielded a larger error than that of Building A, but similar results were obtained when buildings were subjected to combination and laminar wind loads.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wind-Load Calculation Program for Rectangular Buildings Based on Wind Tunnel Experimental Data for Preliminary Structural Designs\",\"authors\":\"Dong-Hyeon Shin, Young-cheol Ha\",\"doi\":\"10.3390/buildings14082294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we developed a wind load calculation program (WCP) capable of predicting wind loads with relative precision during the preliminary design phase. First, wind tunnel tests were conducted to identify the essential factors necessary for calculating wind loads and the variables influencing these factors. Square building shapes were considered, and the wind force coefficients and power spectral density were measured by combining four ground roughness values, eleven side ratios (D/B), four aspect ratios (H/BD), and wind directions ranging from 0° to 90°. The wind power coefficient and the spectral coefficient were formulated so that the wind load could be calculated according to various conditions. The WCP computations were based on the calculation of the load combination coefficient using the resonant wind load. Finally, the wind loads obtained from the wind tunnel tests were compared with those predicted by the WCP using an actual project model (inner-core (A) and outer-core (B) types). Building A yielded similar WCP and wind tunnel experimental responses when subjected to wind and laminar wind loads. Additionally, Building B yielded a larger error than that of Building A, but similar results were obtained when buildings were subjected to combination and laminar wind loads.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14082294\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082294","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Wind-Load Calculation Program for Rectangular Buildings Based on Wind Tunnel Experimental Data for Preliminary Structural Designs
In this study, we developed a wind load calculation program (WCP) capable of predicting wind loads with relative precision during the preliminary design phase. First, wind tunnel tests were conducted to identify the essential factors necessary for calculating wind loads and the variables influencing these factors. Square building shapes were considered, and the wind force coefficients and power spectral density were measured by combining four ground roughness values, eleven side ratios (D/B), four aspect ratios (H/BD), and wind directions ranging from 0° to 90°. The wind power coefficient and the spectral coefficient were formulated so that the wind load could be calculated according to various conditions. The WCP computations were based on the calculation of the load combination coefficient using the resonant wind load. Finally, the wind loads obtained from the wind tunnel tests were compared with those predicted by the WCP using an actual project model (inner-core (A) and outer-core (B) types). Building A yielded similar WCP and wind tunnel experimental responses when subjected to wind and laminar wind loads. Additionally, Building B yielded a larger error than that of Building A, but similar results were obtained when buildings were subjected to combination and laminar wind loads.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates