Honggang Mi, Yunan Liang, Qiang Sun, Chao Wei, Hongwei Song, Quanying Zhang, Ningchao Li, Xin Nie
{"title":"螺旋钻孔放射性测井响应模拟研究","authors":"Honggang Mi, Yunan Liang, Qiang Sun, Chao Wei, Hongwei Song, Quanying Zhang, Ningchao Li, Xin Nie","doi":"10.1093/jge/gxae078","DOIUrl":null,"url":null,"abstract":"\n The spiral borehole, primarily attributed to uneven force on the drill bit, poses a unique drilling and well logging challenge. In certain logging applications, this phenomenon can disrupt logging responses, introducing periodic fluctuations in the logging curve and complicating the interpretation process. To elucidate the impact of the spiral-borehole phenomenon on conventional radioactive logging methods, we conducted a simulation study examining its effects on traditional density tool (GGD), thermal-neutron porosity tool (TNP), and natural gamma tool (GR). Our findings reveal significant influences on density and porosity tool responses, with the amplitude of periodic fluctuations in logging curves closely linked to the groove depth of the spiral borehole. Conversely, the natural gamma tool exhibits minimal impact, with noticeable spiral-borehole effects causing limited fluctuations. Additionally, when the groove depth of the spiral borehole is fixed, the smaller the distance between the logging tool and the well wall, the closer the value obtained by the logging tool is to the true value of the formation parameter, and vice versa. This research offers theoretical insights for effectively correcting spiral-borehole effects in radioactive logging methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"54 23","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation study on the radioactive logging responses in the spiral borehole\",\"authors\":\"Honggang Mi, Yunan Liang, Qiang Sun, Chao Wei, Hongwei Song, Quanying Zhang, Ningchao Li, Xin Nie\",\"doi\":\"10.1093/jge/gxae078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The spiral borehole, primarily attributed to uneven force on the drill bit, poses a unique drilling and well logging challenge. In certain logging applications, this phenomenon can disrupt logging responses, introducing periodic fluctuations in the logging curve and complicating the interpretation process. To elucidate the impact of the spiral-borehole phenomenon on conventional radioactive logging methods, we conducted a simulation study examining its effects on traditional density tool (GGD), thermal-neutron porosity tool (TNP), and natural gamma tool (GR). Our findings reveal significant influences on density and porosity tool responses, with the amplitude of periodic fluctuations in logging curves closely linked to the groove depth of the spiral borehole. Conversely, the natural gamma tool exhibits minimal impact, with noticeable spiral-borehole effects causing limited fluctuations. Additionally, when the groove depth of the spiral borehole is fixed, the smaller the distance between the logging tool and the well wall, the closer the value obtained by the logging tool is to the true value of the formation parameter, and vice versa. This research offers theoretical insights for effectively correcting spiral-borehole effects in radioactive logging methods.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"54 23\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxae078\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae078","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Simulation study on the radioactive logging responses in the spiral borehole
The spiral borehole, primarily attributed to uneven force on the drill bit, poses a unique drilling and well logging challenge. In certain logging applications, this phenomenon can disrupt logging responses, introducing periodic fluctuations in the logging curve and complicating the interpretation process. To elucidate the impact of the spiral-borehole phenomenon on conventional radioactive logging methods, we conducted a simulation study examining its effects on traditional density tool (GGD), thermal-neutron porosity tool (TNP), and natural gamma tool (GR). Our findings reveal significant influences on density and porosity tool responses, with the amplitude of periodic fluctuations in logging curves closely linked to the groove depth of the spiral borehole. Conversely, the natural gamma tool exhibits minimal impact, with noticeable spiral-borehole effects causing limited fluctuations. Additionally, when the groove depth of the spiral borehole is fixed, the smaller the distance between the logging tool and the well wall, the closer the value obtained by the logging tool is to the true value of the formation parameter, and vice versa. This research offers theoretical insights for effectively correcting spiral-borehole effects in radioactive logging methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.