利用遗传优化算法解决 0-1 Knapsack 问题

Mubarak Altamimi, Emrullah Sonuç, Nehad Ramaha, Ijibadejo William
{"title":"利用遗传优化算法解决 0-1 Knapsack 问题","authors":"Mubarak Altamimi, Emrullah Sonuç, Nehad Ramaha, Ijibadejo William","doi":"10.47191/etj/v9i07.10","DOIUrl":null,"url":null,"abstract":"A 0-1 knapsack problem with m constraints is known as the 0-1 multidimensional knapsack problem, and it is challenging to solve using standard techniques like branch and bound algorithms or dynamic programming. The goal of the Knapsack problem is to maximize the utility of the items in a knapsack while staying within its carrying capacity. This paper presents a genetic algorithm with Python code that can solve publicly available instances of the multidimensional knapsack problem in a very quick computational time. By identifying the significant genes, the attribute reduction method that uses the rough set theory reduces the search space and guarantees that useful information is not lost. To regulate convergence, the algorithm makes use of many additional hyperparameters that can be adjusted in the code.","PeriodicalId":507832,"journal":{"name":"Engineering and Technology Journal","volume":"49 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"0-1 Knapsack Problem Solving using Genetic Optimization Algorithm\",\"authors\":\"Mubarak Altamimi, Emrullah Sonuç, Nehad Ramaha, Ijibadejo William\",\"doi\":\"10.47191/etj/v9i07.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 0-1 knapsack problem with m constraints is known as the 0-1 multidimensional knapsack problem, and it is challenging to solve using standard techniques like branch and bound algorithms or dynamic programming. The goal of the Knapsack problem is to maximize the utility of the items in a knapsack while staying within its carrying capacity. This paper presents a genetic algorithm with Python code that can solve publicly available instances of the multidimensional knapsack problem in a very quick computational time. By identifying the significant genes, the attribute reduction method that uses the rough set theory reduces the search space and guarantees that useful information is not lost. To regulate convergence, the algorithm makes use of many additional hyperparameters that can be adjusted in the code.\",\"PeriodicalId\":507832,\"journal\":{\"name\":\"Engineering and Technology Journal\",\"volume\":\"49 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering and Technology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47191/etj/v9i07.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering and Technology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47191/etj/v9i07.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

带有 m 个约束条件的 0-1 节包问题被称为 0-1 多维节包问题,使用分支与边界算法或动态编程等标准技术来解决这个问题具有挑战性。背包问题的目标是在不超出背包承载能力的情况下,最大化背包中物品的效用。本文介绍了一种带有 Python 代码的遗传算法,该算法可以在极短的计算时间内解决多维背包问题的公开实例。通过识别重要基因,利用粗糙集理论的属性缩减法缩小了搜索空间,保证了有用信息不会丢失。为了调节收敛性,该算法使用了许多额外的超参数,这些参数可以在代码中进行调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
0-1 Knapsack Problem Solving using Genetic Optimization Algorithm
A 0-1 knapsack problem with m constraints is known as the 0-1 multidimensional knapsack problem, and it is challenging to solve using standard techniques like branch and bound algorithms or dynamic programming. The goal of the Knapsack problem is to maximize the utility of the items in a knapsack while staying within its carrying capacity. This paper presents a genetic algorithm with Python code that can solve publicly available instances of the multidimensional knapsack problem in a very quick computational time. By identifying the significant genes, the attribute reduction method that uses the rough set theory reduces the search space and guarantees that useful information is not lost. To regulate convergence, the algorithm makes use of many additional hyperparameters that can be adjusted in the code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信