Leng Tian, X. Chai, Lei Zhang, Wenbo Zhang, Yuan Zhu, Jiaxin Wang, Jianguo Wang
{"title":"提高油藏水淹采收率的多层共生兼容性评估研究","authors":"Leng Tian, X. Chai, Lei Zhang, Wenbo Zhang, Yuan Zhu, Jiaxin Wang, Jianguo Wang","doi":"10.3390/en17153667","DOIUrl":null,"url":null,"abstract":"Increasing oil production is crucial for multilayer co-production. When there are significant differences in the permeability of each layer, an interlayer contradiction arises that can impact the recovery efficiency. After a number of tests and the establishment of a mathematical model, the effects of permeability contrast on oil production for water flooding were revealed. In the meantime, the developed mathematical model was solved using the Buckley–Lever seepage equation. Ultimately, the accuracy of the established model was confirmed by comparing the simulated outcomes of the mathematical model with the experimental results. The findings indicate that when permeability contrast increases, the production ratio of the high-permeability layer will improve. This is primarily due to the low-permeability layer’s production contribution rate decreasing. The accuracy of the established model is ensured by an error of less than 5% between the results of the experiment and the simulation. When the permeability contrast is less than three, the low-permeability layer can be effectively used for three-layer commingled production. However, when the permeability contrast exceeds six, the production coefficient of the low-permeability layer will be less than 5%, which has a significant impact on the layer’s development.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Compatibility Evaluation of Multilayer Co-Production to Enhance Recovery of Water Flooding in Oil Reservoir\",\"authors\":\"Leng Tian, X. Chai, Lei Zhang, Wenbo Zhang, Yuan Zhu, Jiaxin Wang, Jianguo Wang\",\"doi\":\"10.3390/en17153667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing oil production is crucial for multilayer co-production. When there are significant differences in the permeability of each layer, an interlayer contradiction arises that can impact the recovery efficiency. After a number of tests and the establishment of a mathematical model, the effects of permeability contrast on oil production for water flooding were revealed. In the meantime, the developed mathematical model was solved using the Buckley–Lever seepage equation. Ultimately, the accuracy of the established model was confirmed by comparing the simulated outcomes of the mathematical model with the experimental results. The findings indicate that when permeability contrast increases, the production ratio of the high-permeability layer will improve. This is primarily due to the low-permeability layer’s production contribution rate decreasing. The accuracy of the established model is ensured by an error of less than 5% between the results of the experiment and the simulation. When the permeability contrast is less than three, the low-permeability layer can be effectively used for three-layer commingled production. However, when the permeability contrast exceeds six, the production coefficient of the low-permeability layer will be less than 5%, which has a significant impact on the layer’s development.\",\"PeriodicalId\":11557,\"journal\":{\"name\":\"Energies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/en17153667\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17153667","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Study on Compatibility Evaluation of Multilayer Co-Production to Enhance Recovery of Water Flooding in Oil Reservoir
Increasing oil production is crucial for multilayer co-production. When there are significant differences in the permeability of each layer, an interlayer contradiction arises that can impact the recovery efficiency. After a number of tests and the establishment of a mathematical model, the effects of permeability contrast on oil production for water flooding were revealed. In the meantime, the developed mathematical model was solved using the Buckley–Lever seepage equation. Ultimately, the accuracy of the established model was confirmed by comparing the simulated outcomes of the mathematical model with the experimental results. The findings indicate that when permeability contrast increases, the production ratio of the high-permeability layer will improve. This is primarily due to the low-permeability layer’s production contribution rate decreasing. The accuracy of the established model is ensured by an error of less than 5% between the results of the experiment and the simulation. When the permeability contrast is less than three, the low-permeability layer can be effectively used for three-layer commingled production. However, when the permeability contrast exceeds six, the production coefficient of the low-permeability layer will be less than 5%, which has a significant impact on the layer’s development.
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.