二氧化硅气凝胶掺入水泥和石灰抹灰用于建筑隔热:实验研究

IF 3.1 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Larisa Meliță, R. Calotă, M. Amăreanu
{"title":"二氧化硅气凝胶掺入水泥和石灰抹灰用于建筑隔热:实验研究","authors":"Larisa Meliță, R. Calotă, M. Amăreanu","doi":"10.3390/buildings14082300","DOIUrl":null,"url":null,"abstract":"Silica aerogel has remarkable properties, particularly its translucence/transparency, extremely low thermal conductivity and density. Due to these properties, it can be used for the thermal insulation of buildings for energy saving, cost saving, and enhanced comfort. In this context, aerogel products such as aerogel blankets have already started to demonstrate their effectiveness in retrofitting projects and the development and adoption of aerogel glazing systems and aerogel-enhanced renders is promising. Other products, for example, through the incorporation of silica aerogel granules in cement and lime renders were obtained, with high thermal insulation properties, to achieve energy efficiency on buildings facades. This research aims to come up with new aerogel particle composition insulation plasters at cost-effective rates for application in building insulation. Their physical apparent mass density, mechanical–flexural and compressive strengths, thermal conductivity, and properties were investigated. As an experimental study, the thermal conductivities of six sets of cement and lime plasters with aerogel particles (0.1–4.0 mm) were investigated and it was concluded that the thermal conductivity of cement and lime plasters with 80% aerogel was 0.2287 W·m−1·K−1, about 3.4 times smaller than the respective value of traditional lightweight plasters of 0.76 W·m−1·K−1, while the cement and lime plasters with less than 40% aerogel showed a thermal conductivity value as low as 0.3172 W·m−1·K−1. It was confirmed that the end product plasters’ mechanical qualities included low apparent mass densities, no apparent shrinkage, and mechanical strength values that matched those of the prepared compositions. This suggests that the obtained plasters are suitable for use in both new constructions and renovation projects.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silica Aerogel-Incorporated Cement and Lime Plasters for Building Insulation: An Experimental Study\",\"authors\":\"Larisa Meliță, R. Calotă, M. Amăreanu\",\"doi\":\"10.3390/buildings14082300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silica aerogel has remarkable properties, particularly its translucence/transparency, extremely low thermal conductivity and density. Due to these properties, it can be used for the thermal insulation of buildings for energy saving, cost saving, and enhanced comfort. In this context, aerogel products such as aerogel blankets have already started to demonstrate their effectiveness in retrofitting projects and the development and adoption of aerogel glazing systems and aerogel-enhanced renders is promising. Other products, for example, through the incorporation of silica aerogel granules in cement and lime renders were obtained, with high thermal insulation properties, to achieve energy efficiency on buildings facades. This research aims to come up with new aerogel particle composition insulation plasters at cost-effective rates for application in building insulation. Their physical apparent mass density, mechanical–flexural and compressive strengths, thermal conductivity, and properties were investigated. As an experimental study, the thermal conductivities of six sets of cement and lime plasters with aerogel particles (0.1–4.0 mm) were investigated and it was concluded that the thermal conductivity of cement and lime plasters with 80% aerogel was 0.2287 W·m−1·K−1, about 3.4 times smaller than the respective value of traditional lightweight plasters of 0.76 W·m−1·K−1, while the cement and lime plasters with less than 40% aerogel showed a thermal conductivity value as low as 0.3172 W·m−1·K−1. It was confirmed that the end product plasters’ mechanical qualities included low apparent mass densities, no apparent shrinkage, and mechanical strength values that matched those of the prepared compositions. This suggests that the obtained plasters are suitable for use in both new constructions and renovation projects.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14082300\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082300","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化硅气凝胶具有显著的特性,尤其是半透明/透明性、极低的导热率和密度。由于这些特性,它可用于建筑物的隔热保温,以达到节能、节约成本和提高舒适度的目的。在这方面,气凝胶产品(如气凝胶毯)已开始在改造项目中显示出其有效性,气凝胶玻璃系统和气凝胶增强涂料的开发和应用也很有前景。其他产品,例如,通过在水泥和石灰砂浆中加入二氧化硅气凝胶颗粒,获得了高隔热性能,实现了建筑物外墙的节能。这项研究的目的是以具有成本效益的价格研制出新型气凝胶颗粒成分保温抹灰,用于建筑保温。研究了它们的物理表观质量密度、机械抗折和抗压强度、导热性能和特性。作为一项实验研究,对六组含有气凝胶颗粒(0.1-4.0 毫米)的水泥和石灰抹灰的导热系数进行了调查,得出的结论是,含有 80% 气凝胶的水泥和石灰抹灰的导热系数为 0.2287 W-m-1-K-1,比传统轻质抹灰的相应值 0.76 W-m-1-K-1 小约 3.4 倍,而含有少于 40% 气凝胶的水泥和石灰抹灰的导热系数值低至 0.3172 W-m-1-K-1。经证实,最终产品抹灰的机械质量包括低表观质量密度、无表观收缩,以及与制备的组合物相匹配的机械强度值。这表明所获得的抹灰适用于新建筑和翻新项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Silica Aerogel-Incorporated Cement and Lime Plasters for Building Insulation: An Experimental Study
Silica aerogel has remarkable properties, particularly its translucence/transparency, extremely low thermal conductivity and density. Due to these properties, it can be used for the thermal insulation of buildings for energy saving, cost saving, and enhanced comfort. In this context, aerogel products such as aerogel blankets have already started to demonstrate their effectiveness in retrofitting projects and the development and adoption of aerogel glazing systems and aerogel-enhanced renders is promising. Other products, for example, through the incorporation of silica aerogel granules in cement and lime renders were obtained, with high thermal insulation properties, to achieve energy efficiency on buildings facades. This research aims to come up with new aerogel particle composition insulation plasters at cost-effective rates for application in building insulation. Their physical apparent mass density, mechanical–flexural and compressive strengths, thermal conductivity, and properties were investigated. As an experimental study, the thermal conductivities of six sets of cement and lime plasters with aerogel particles (0.1–4.0 mm) were investigated and it was concluded that the thermal conductivity of cement and lime plasters with 80% aerogel was 0.2287 W·m−1·K−1, about 3.4 times smaller than the respective value of traditional lightweight plasters of 0.76 W·m−1·K−1, while the cement and lime plasters with less than 40% aerogel showed a thermal conductivity value as low as 0.3172 W·m−1·K−1. It was confirmed that the end product plasters’ mechanical qualities included low apparent mass densities, no apparent shrinkage, and mechanical strength values that matched those of the prepared compositions. This suggests that the obtained plasters are suitable for use in both new constructions and renovation projects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Buildings
Buildings Multiple-
CiteScore
3.40
自引率
26.30%
发文量
1883
审稿时长
11 weeks
期刊介绍: BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信