Z. Ruan, Z. Ying, Zhao-Zhong Ying, Hua Lei, Wen Wang, Lei Xia
{"title":"基于动态编程原理的带支撑质量的周期性粘弹性夹层板的随机优化有界参数控制","authors":"Z. Ruan, Z. Ying, Zhao-Zhong Ying, Hua Lei, Wen Wang, Lei Xia","doi":"10.3390/buildings14082309","DOIUrl":null,"url":null,"abstract":"The sandwich plate (SP) with supported mass can model structural systems such as platform or floor with installed vibration-sensitive apparatus under random loading. The stochastic optimal control (in time domain) of periodic (in space) viscoelastomer (VE) SP with supported mass subjected to random excitation is an important research subject, which can fully use VE controllability, but it is a challenging problem on optimal bounded parametric control (OBPC). In this paper, a stochastic OBPC for periodic VESP with supported mass subjected to random base loading is proposed according to the stochastic dynamical programming (SDP) principle. Response-reduction capability using the proposed OBPC is studied to demonstrate further control effectiveness of periodic SP via SDP. Controllable VE core modulus of SP is distributed periodically in space. Differential equations for coupling vibration of periodic SP with supported mass are derived and transformed into multi-dimensional system equations with parameters as nonlinear functions of bounded control. The OBPC problem is established by the system equations and performance index with bound constraint. Then, an SDP equation is derived according to the SDP principle. The OBPC law is obtained from the SDP equation under bound constraint. Optimally controlled responses are calculated and compared with passively controlled responses to evaluate control effectiveness. Numerical results on responses and statistics of SP via the proposed OBPC show further remarkable control effectiveness.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"50 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Optimal Bounded Parametric Control of Periodic Viscoelastomer Sandwich Plate with Supported Mass Based on Dynamical Programming Principle\",\"authors\":\"Z. Ruan, Z. Ying, Zhao-Zhong Ying, Hua Lei, Wen Wang, Lei Xia\",\"doi\":\"10.3390/buildings14082309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sandwich plate (SP) with supported mass can model structural systems such as platform or floor with installed vibration-sensitive apparatus under random loading. The stochastic optimal control (in time domain) of periodic (in space) viscoelastomer (VE) SP with supported mass subjected to random excitation is an important research subject, which can fully use VE controllability, but it is a challenging problem on optimal bounded parametric control (OBPC). In this paper, a stochastic OBPC for periodic VESP with supported mass subjected to random base loading is proposed according to the stochastic dynamical programming (SDP) principle. Response-reduction capability using the proposed OBPC is studied to demonstrate further control effectiveness of periodic SP via SDP. Controllable VE core modulus of SP is distributed periodically in space. Differential equations for coupling vibration of periodic SP with supported mass are derived and transformed into multi-dimensional system equations with parameters as nonlinear functions of bounded control. The OBPC problem is established by the system equations and performance index with bound constraint. Then, an SDP equation is derived according to the SDP principle. The OBPC law is obtained from the SDP equation under bound constraint. Optimally controlled responses are calculated and compared with passively controlled responses to evaluate control effectiveness. Numerical results on responses and statistics of SP via the proposed OBPC show further remarkable control effectiveness.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"50 6\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14082309\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082309","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Stochastic Optimal Bounded Parametric Control of Periodic Viscoelastomer Sandwich Plate with Supported Mass Based on Dynamical Programming Principle
The sandwich plate (SP) with supported mass can model structural systems such as platform or floor with installed vibration-sensitive apparatus under random loading. The stochastic optimal control (in time domain) of periodic (in space) viscoelastomer (VE) SP with supported mass subjected to random excitation is an important research subject, which can fully use VE controllability, but it is a challenging problem on optimal bounded parametric control (OBPC). In this paper, a stochastic OBPC for periodic VESP with supported mass subjected to random base loading is proposed according to the stochastic dynamical programming (SDP) principle. Response-reduction capability using the proposed OBPC is studied to demonstrate further control effectiveness of periodic SP via SDP. Controllable VE core modulus of SP is distributed periodically in space. Differential equations for coupling vibration of periodic SP with supported mass are derived and transformed into multi-dimensional system equations with parameters as nonlinear functions of bounded control. The OBPC problem is established by the system equations and performance index with bound constraint. Then, an SDP equation is derived according to the SDP principle. The OBPC law is obtained from the SDP equation under bound constraint. Optimally controlled responses are calculated and compared with passively controlled responses to evaluate control effectiveness. Numerical results on responses and statistics of SP via the proposed OBPC show further remarkable control effectiveness.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico