{"title":"基于长短期记忆自动编码器和极端梯度提升技术的工厂能源管理框架--用于能耗预测","authors":"Yeeun Moon, Younjeong Lee, Yejin Hwang, J. Jeong","doi":"10.3390/en17153666","DOIUrl":null,"url":null,"abstract":"Electricity consumption prediction is crucial for the operation, strategic planning, and maintenance of power grid infrastructure. The effective management of power systems depends on accurately predicting electricity usage patterns and intensity. This study aims to enhance the operational efficiency of power systems and minimize environmental impact by predicting mid to long-term electricity consumption in industrial facilities, particularly in forging processes, and detecting anomalies in energy consumption. We propose an ensemble model combining Extreme Gradient Boosting (XGBoost) and a Long Short-Term Memory Autoencoder (LSTM-AE) to accurately forecast power consumption. This approach leverages the strengths of both models to improve prediction accuracy and responsiveness. The dataset includes power consumption data from forging processes in manufacturing plants, as well as system load and System Marginal Price data. During data preprocessing, Expectation Maximization Principal Component Analysis was applied to address missing values and select significant features, optimizing the model. The proposed method achieved a Mean Absolute Error of 0.020, a Mean Squared Error of 0.021, a Coefficient of Determination of 0.99, and a Symmetric Mean Absolute Percentage Error of 4.24, highlighting its superior predictive performance and low relative error. These findings underscore the model’s reliability and accuracy for integration into Energy Management Systems for real-time data processing and mid to long-term energy planning, facilitating sustainable energy use and informed decision making in industrial settings.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"52 17","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long Short-Term Memory Autoencoder and Extreme Gradient Boosting-Based Factory Energy Management Framework for Power Consumption Forecasting\",\"authors\":\"Yeeun Moon, Younjeong Lee, Yejin Hwang, J. Jeong\",\"doi\":\"10.3390/en17153666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electricity consumption prediction is crucial for the operation, strategic planning, and maintenance of power grid infrastructure. The effective management of power systems depends on accurately predicting electricity usage patterns and intensity. This study aims to enhance the operational efficiency of power systems and minimize environmental impact by predicting mid to long-term electricity consumption in industrial facilities, particularly in forging processes, and detecting anomalies in energy consumption. We propose an ensemble model combining Extreme Gradient Boosting (XGBoost) and a Long Short-Term Memory Autoencoder (LSTM-AE) to accurately forecast power consumption. This approach leverages the strengths of both models to improve prediction accuracy and responsiveness. The dataset includes power consumption data from forging processes in manufacturing plants, as well as system load and System Marginal Price data. During data preprocessing, Expectation Maximization Principal Component Analysis was applied to address missing values and select significant features, optimizing the model. The proposed method achieved a Mean Absolute Error of 0.020, a Mean Squared Error of 0.021, a Coefficient of Determination of 0.99, and a Symmetric Mean Absolute Percentage Error of 4.24, highlighting its superior predictive performance and low relative error. These findings underscore the model’s reliability and accuracy for integration into Energy Management Systems for real-time data processing and mid to long-term energy planning, facilitating sustainable energy use and informed decision making in industrial settings.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"52 17\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/en17153666\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17153666","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Long Short-Term Memory Autoencoder and Extreme Gradient Boosting-Based Factory Energy Management Framework for Power Consumption Forecasting
Electricity consumption prediction is crucial for the operation, strategic planning, and maintenance of power grid infrastructure. The effective management of power systems depends on accurately predicting electricity usage patterns and intensity. This study aims to enhance the operational efficiency of power systems and minimize environmental impact by predicting mid to long-term electricity consumption in industrial facilities, particularly in forging processes, and detecting anomalies in energy consumption. We propose an ensemble model combining Extreme Gradient Boosting (XGBoost) and a Long Short-Term Memory Autoencoder (LSTM-AE) to accurately forecast power consumption. This approach leverages the strengths of both models to improve prediction accuracy and responsiveness. The dataset includes power consumption data from forging processes in manufacturing plants, as well as system load and System Marginal Price data. During data preprocessing, Expectation Maximization Principal Component Analysis was applied to address missing values and select significant features, optimizing the model. The proposed method achieved a Mean Absolute Error of 0.020, a Mean Squared Error of 0.021, a Coefficient of Determination of 0.99, and a Symmetric Mean Absolute Percentage Error of 4.24, highlighting its superior predictive performance and low relative error. These findings underscore the model’s reliability and accuracy for integration into Energy Management Systems for real-time data processing and mid to long-term energy planning, facilitating sustainable energy use and informed decision making in industrial settings.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico