{"title":"基于机器学习的皮层下神经成像在帕金森病诊断中的性别差异","authors":"N. Islam, Ruqaiya Khanam","doi":"10.1108/aci-02-2024-0080","DOIUrl":null,"url":null,"abstract":"PurposeThis study evaluates machine learning (ML) classifiers for diagnosing Parkinson’s disease (PD) using subcortical brain region data from 3D T1 magnetic resonance imaging (MRI) Parkinson’s Progression Markers Initiative (PPMI database). We aim to identify top-performing algorithms and assess gender-related differences in accuracy.Design/methodology/approachMultiple ML algorithms will be compared for their ability to classify PD vs healthy controls using MRI scans of the brain structures like the putamen, thalamus, brainstem, accumbens, amygdala, caudate, hippocampus and pallidum. Analysis will include gender-specific performance comparisons.FindingsThe study reveals that ML classifier performance in diagnosing PD varies across subcortical brain regions and shows gender differences. The Extra Trees classifier performed best in men (86.36% accuracy in the putamen), while Naive Bayes performed best in women (69.23%, amygdala). Regions like the accumbens, hippocampus and caudate showed moderate accuracy (65–70%) in men and poor performance in women. The results point out a significant gender-based performance gap, highlighting the need for gender-specific models to improve diagnostic precision across complex brain structures.Originality/valueThis study highlights the significant impact of gender on machine learning diagnosis of PD using data from subcortical brain regions. Our novel focus on these regions uncovers their diagnostic potential, improves model accuracy and emphasizes the need for gender-specific approaches in medical AI. This work could ultimately lead to earlier PD detection and more personalized treatment.","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":"29 22","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gender variability in machine learning based subcortical neuroimaging for Parkinson’s disease diagnosis\",\"authors\":\"N. Islam, Ruqaiya Khanam\",\"doi\":\"10.1108/aci-02-2024-0080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis study evaluates machine learning (ML) classifiers for diagnosing Parkinson’s disease (PD) using subcortical brain region data from 3D T1 magnetic resonance imaging (MRI) Parkinson’s Progression Markers Initiative (PPMI database). We aim to identify top-performing algorithms and assess gender-related differences in accuracy.Design/methodology/approachMultiple ML algorithms will be compared for their ability to classify PD vs healthy controls using MRI scans of the brain structures like the putamen, thalamus, brainstem, accumbens, amygdala, caudate, hippocampus and pallidum. Analysis will include gender-specific performance comparisons.FindingsThe study reveals that ML classifier performance in diagnosing PD varies across subcortical brain regions and shows gender differences. The Extra Trees classifier performed best in men (86.36% accuracy in the putamen), while Naive Bayes performed best in women (69.23%, amygdala). Regions like the accumbens, hippocampus and caudate showed moderate accuracy (65–70%) in men and poor performance in women. The results point out a significant gender-based performance gap, highlighting the need for gender-specific models to improve diagnostic precision across complex brain structures.Originality/valueThis study highlights the significant impact of gender on machine learning diagnosis of PD using data from subcortical brain regions. Our novel focus on these regions uncovers their diagnostic potential, improves model accuracy and emphasizes the need for gender-specific approaches in medical AI. This work could ultimately lead to earlier PD detection and more personalized treatment.\",\"PeriodicalId\":12,\"journal\":{\"name\":\"ACS Chemical Health & Safety\",\"volume\":\"29 22\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Health & Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/aci-02-2024-0080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Health & Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/aci-02-2024-0080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Gender variability in machine learning based subcortical neuroimaging for Parkinson’s disease diagnosis
PurposeThis study evaluates machine learning (ML) classifiers for diagnosing Parkinson’s disease (PD) using subcortical brain region data from 3D T1 magnetic resonance imaging (MRI) Parkinson’s Progression Markers Initiative (PPMI database). We aim to identify top-performing algorithms and assess gender-related differences in accuracy.Design/methodology/approachMultiple ML algorithms will be compared for their ability to classify PD vs healthy controls using MRI scans of the brain structures like the putamen, thalamus, brainstem, accumbens, amygdala, caudate, hippocampus and pallidum. Analysis will include gender-specific performance comparisons.FindingsThe study reveals that ML classifier performance in diagnosing PD varies across subcortical brain regions and shows gender differences. The Extra Trees classifier performed best in men (86.36% accuracy in the putamen), while Naive Bayes performed best in women (69.23%, amygdala). Regions like the accumbens, hippocampus and caudate showed moderate accuracy (65–70%) in men and poor performance in women. The results point out a significant gender-based performance gap, highlighting the need for gender-specific models to improve diagnostic precision across complex brain structures.Originality/valueThis study highlights the significant impact of gender on machine learning diagnosis of PD using data from subcortical brain regions. Our novel focus on these regions uncovers their diagnostic potential, improves model accuracy and emphasizes the need for gender-specific approaches in medical AI. This work could ultimately lead to earlier PD detection and more personalized treatment.
期刊介绍:
The Journal of Chemical Health and Safety focuses on news, information, and ideas relating to issues and advances in chemical health and safety. The Journal of Chemical Health and Safety covers up-to-the minute, in-depth views of safety issues ranging from OSHA and EPA regulations to the safe handling of hazardous waste, from the latest innovations in effective chemical hygiene practices to the courts'' most recent rulings on safety-related lawsuits. The Journal of Chemical Health and Safety presents real-world information that health, safety and environmental professionals and others responsible for the safety of their workplaces can put to use right away, identifying potential and developing safety concerns before they do real harm.