Hajo Groneberg, Sven Oberdiek, Carolin Schulz, Andreas Hofmann, Alexander Schloske, Frank Doepper
{"title":"实施和验证 PBF-LB/M 的整体框架,通过预测工艺稳定性对单个产品进行风险管理","authors":"Hajo Groneberg, Sven Oberdiek, Carolin Schulz, Andreas Hofmann, Alexander Schloske, Frank Doepper","doi":"10.3390/jmmp8040158","DOIUrl":null,"url":null,"abstract":"The additive manufacturing technology powder bed fusion of metal with a laser beam (PBF-LB/M) is industrially established for tool-free production of complex and individualized components and products. While the in-processing is based on a layer-by-layer build-up of material, both upstream and downstream process steps (pre-processing and post-processing) are necessary for demand-oriented production. However, there are increasing concerns in the industry about the efficient and economical implementation and validation of the PBF-LB/M. Individual products for mass personalization pose a particular challenge, as they are subject to sophisticated risk management, especially in highly regulated sectors such as medical technology. Additive manufacturing using PBF-LB/M is a suitable technology but a complex one to master in this environment. A structured system for holistic decision-making concerning technical and economic feasibility, as well as quality and risk-oriented process management, is currently not available. In the context of this research, a framework is proposed that demonstrates the essential steps for the systematic implementation and validation of PBF-LB/M in two structured phases. The intention is to make process-related key performance indicators such as part accuracy, surface finish, mechanical properties, and production efficiency controllable and ensure reliable product manufacturing. The framework is then visualized and evaluated using a practice-oriented case study environment.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holistic Framework for the Implementation and Validation of PBF-LB/M with Risk Management for Individual Products through Predictive Process Stability\",\"authors\":\"Hajo Groneberg, Sven Oberdiek, Carolin Schulz, Andreas Hofmann, Alexander Schloske, Frank Doepper\",\"doi\":\"10.3390/jmmp8040158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The additive manufacturing technology powder bed fusion of metal with a laser beam (PBF-LB/M) is industrially established for tool-free production of complex and individualized components and products. While the in-processing is based on a layer-by-layer build-up of material, both upstream and downstream process steps (pre-processing and post-processing) are necessary for demand-oriented production. However, there are increasing concerns in the industry about the efficient and economical implementation and validation of the PBF-LB/M. Individual products for mass personalization pose a particular challenge, as they are subject to sophisticated risk management, especially in highly regulated sectors such as medical technology. Additive manufacturing using PBF-LB/M is a suitable technology but a complex one to master in this environment. A structured system for holistic decision-making concerning technical and economic feasibility, as well as quality and risk-oriented process management, is currently not available. In the context of this research, a framework is proposed that demonstrates the essential steps for the systematic implementation and validation of PBF-LB/M in two structured phases. The intention is to make process-related key performance indicators such as part accuracy, surface finish, mechanical properties, and production efficiency controllable and ensure reliable product manufacturing. The framework is then visualized and evaluated using a practice-oriented case study environment.\",\"PeriodicalId\":16319,\"journal\":{\"name\":\"Journal of Manufacturing and Materials Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing and Materials Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jmmp8040158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp8040158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Holistic Framework for the Implementation and Validation of PBF-LB/M with Risk Management for Individual Products through Predictive Process Stability
The additive manufacturing technology powder bed fusion of metal with a laser beam (PBF-LB/M) is industrially established for tool-free production of complex and individualized components and products. While the in-processing is based on a layer-by-layer build-up of material, both upstream and downstream process steps (pre-processing and post-processing) are necessary for demand-oriented production. However, there are increasing concerns in the industry about the efficient and economical implementation and validation of the PBF-LB/M. Individual products for mass personalization pose a particular challenge, as they are subject to sophisticated risk management, especially in highly regulated sectors such as medical technology. Additive manufacturing using PBF-LB/M is a suitable technology but a complex one to master in this environment. A structured system for holistic decision-making concerning technical and economic feasibility, as well as quality and risk-oriented process management, is currently not available. In the context of this research, a framework is proposed that demonstrates the essential steps for the systematic implementation and validation of PBF-LB/M in two structured phases. The intention is to make process-related key performance indicators such as part accuracy, surface finish, mechanical properties, and production efficiency controllable and ensure reliable product manufacturing. The framework is then visualized and evaluated using a practice-oriented case study environment.