利用最后规划师系统和建筑信息模型减少 "做 "的做法:系统动态分析

IF 3.1 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Mahmoud Karaz, J. C. Teixeira, Tatiana Gondim do Amaral
{"title":"利用最后规划师系统和建筑信息模型减少 \"做 \"的做法:系统动态分析","authors":"Mahmoud Karaz, J. C. Teixeira, Tatiana Gondim do Amaral","doi":"10.3390/buildings14082314","DOIUrl":null,"url":null,"abstract":"Effective waste elimination is critical for the success of construction projects. Although several studies have focused on various aspects of construction waste, limited efforts have yet to investigate the dynamic effect of Making-Do (MD) practices on productivity, rework, defects, and material waste. From a lean construction perspective, this study aims to address MD waste using the Last Planner System (LPS) and BIM. First, the causal structure that can cause MD in construction projects was expressed in a causal loop diagram (CLD), and thematic analysis uncovered the strategies of LPS-BIM to eliminate MD identified by reviewing the literature. Secondly, twenty-five strategies from the LPS and BIM strategies to address MD using structural equation modeling (SEM) were assessed. Subsequently, a system dynamics model (SDM) for investigating LPS-BIM strategies on MD decisions in a construction project was formulated based on the underlying causal loop diagrams and the mathematical relations among the variables. Finally, the model was applied to three projects, and simulations for four LPS-BIM scenarios were carried out. The findings show that dynamic interactions among diverse production planning and control factors are critical in evaluating MD impacts on a construction project. The results demonstrate that the LPS-BIM approach resulted in an average 43.8% reduction in the tasks performed with MD, 45.3% of constraints, 66.5% of construction waste, an increasing 13.7% completion rate, and a 29.3% cost reduction, demonstrating that LPS-BIM is a more efficient solution for MD mitigation and construction planning. This study aims to guide construction planners and policymakers to better manage their production constraints by eliminating negative MD practices from their plans.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating Making-Do Practices Using the Last Planner System and BIM: A System Dynamic Analysis\",\"authors\":\"Mahmoud Karaz, J. C. Teixeira, Tatiana Gondim do Amaral\",\"doi\":\"10.3390/buildings14082314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective waste elimination is critical for the success of construction projects. Although several studies have focused on various aspects of construction waste, limited efforts have yet to investigate the dynamic effect of Making-Do (MD) practices on productivity, rework, defects, and material waste. From a lean construction perspective, this study aims to address MD waste using the Last Planner System (LPS) and BIM. First, the causal structure that can cause MD in construction projects was expressed in a causal loop diagram (CLD), and thematic analysis uncovered the strategies of LPS-BIM to eliminate MD identified by reviewing the literature. Secondly, twenty-five strategies from the LPS and BIM strategies to address MD using structural equation modeling (SEM) were assessed. Subsequently, a system dynamics model (SDM) for investigating LPS-BIM strategies on MD decisions in a construction project was formulated based on the underlying causal loop diagrams and the mathematical relations among the variables. Finally, the model was applied to three projects, and simulations for four LPS-BIM scenarios were carried out. The findings show that dynamic interactions among diverse production planning and control factors are critical in evaluating MD impacts on a construction project. The results demonstrate that the LPS-BIM approach resulted in an average 43.8% reduction in the tasks performed with MD, 45.3% of constraints, 66.5% of construction waste, an increasing 13.7% completion rate, and a 29.3% cost reduction, demonstrating that LPS-BIM is a more efficient solution for MD mitigation and construction planning. This study aims to guide construction planners and policymakers to better manage their production constraints by eliminating negative MD practices from their plans.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14082314\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082314","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

有效消除浪费对建筑项目的成功至关重要。虽然已有多项研究关注了建筑浪费的各个方面,但对 "制作-完成"(MD)实践对生产率、返工、缺陷和材料浪费的动态影响的研究还很有限。从精益建造的角度出发,本研究旨在利用最后规划系统(LPS)和 BIM 解决 MD 废料问题。首先,用因果循环图(CLD)表达了在建筑项目中可能导致 MD 的因果结构,并通过主题分析揭示了通过查阅文献确定的 LPS-BIM 消除 MD 的策略。其次,利用结构方程建模(SEM)对 LPS 和 BIM 解决 MD 的 25 项策略进行了评估。随后,根据基本的因果循环图和变量之间的数学关系,建立了一个系统动力学模型(SDM),用于研究 LPS-BIM 策略对建筑项目中 MD 决策的影响。最后,将该模型应用于三个项目,并对四种 LPS-BIM 方案进行了模拟。研究结果表明,在评估 MD 对建筑项目的影响时,各种生产规划和控制因素之间的动态互动至关重要。结果表明,LPS-BIM 方法平均减少了 43.8% 的 MD 任务,减少了 45.3% 的约束条件,减少了 66.5% 的建筑垃圾,提高了 13.7% 的完工率,降低了 29.3% 的成本,表明 LPS-BIM 是一种更有效的 MD 缓解和施工规划解决方案。本研究旨在指导建筑规划者和决策者通过消除计划中的负面 MD 做法,更好地管理生产制约因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitigating Making-Do Practices Using the Last Planner System and BIM: A System Dynamic Analysis
Effective waste elimination is critical for the success of construction projects. Although several studies have focused on various aspects of construction waste, limited efforts have yet to investigate the dynamic effect of Making-Do (MD) practices on productivity, rework, defects, and material waste. From a lean construction perspective, this study aims to address MD waste using the Last Planner System (LPS) and BIM. First, the causal structure that can cause MD in construction projects was expressed in a causal loop diagram (CLD), and thematic analysis uncovered the strategies of LPS-BIM to eliminate MD identified by reviewing the literature. Secondly, twenty-five strategies from the LPS and BIM strategies to address MD using structural equation modeling (SEM) were assessed. Subsequently, a system dynamics model (SDM) for investigating LPS-BIM strategies on MD decisions in a construction project was formulated based on the underlying causal loop diagrams and the mathematical relations among the variables. Finally, the model was applied to three projects, and simulations for four LPS-BIM scenarios were carried out. The findings show that dynamic interactions among diverse production planning and control factors are critical in evaluating MD impacts on a construction project. The results demonstrate that the LPS-BIM approach resulted in an average 43.8% reduction in the tasks performed with MD, 45.3% of constraints, 66.5% of construction waste, an increasing 13.7% completion rate, and a 29.3% cost reduction, demonstrating that LPS-BIM is a more efficient solution for MD mitigation and construction planning. This study aims to guide construction planners and policymakers to better manage their production constraints by eliminating negative MD practices from their plans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Buildings
Buildings Multiple-
CiteScore
3.40
自引率
26.30%
发文量
1883
审稿时长
11 weeks
期刊介绍: BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信