{"title":"通过联合仿真分析优化火花点火发动机的火花正时","authors":"Ivan Arsie, E. Frasci, A. Irimescu, S. Merola","doi":"10.3390/en17153695","DOIUrl":null,"url":null,"abstract":"The automotive industry is experiencing radical changes under the pressure of institutions that are increasingly reducing the limits on CO2 and pollutant emissions from road vehicles powered by internal combustion engines (ICEs). A way to decarbonize the transport sector without disrupting current automotive production is the adoption of alternative fuels for internal combustion engines (ICEs). Hydrogen is very attractive, thanks to the zero-carbon content and very high laminar flame speed, allowing for extending the lean burn limit. Other alternative fuels are methanol and ethanol. This work deals with the conversion of a small-sized passenger car powered by a three-cylinder spark ignition (SI) engine for the use of alternative fuels. In particular, the spark timing has been optimized to improve the fuel economy under every operating condition. The optimization procedure is based on the MATLAB/Simulink® R2024a-GT-Power co-simulation analysis and minimizes the fuel consumption by varying the spark timing independently for each cylinder. In particular, at full load, the algorithm reduces the spark timing only for the cylinder in which knock is detected, reducing fuel consumption by about 2% compared to the base calibration. This approach will be adopted in future activities to understand how the use of alternative fuels affects the ignition control strategy.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spark Timing Optimization through Co-Simulation Analysis in a Spark Ignition Engine\",\"authors\":\"Ivan Arsie, E. Frasci, A. Irimescu, S. Merola\",\"doi\":\"10.3390/en17153695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automotive industry is experiencing radical changes under the pressure of institutions that are increasingly reducing the limits on CO2 and pollutant emissions from road vehicles powered by internal combustion engines (ICEs). A way to decarbonize the transport sector without disrupting current automotive production is the adoption of alternative fuels for internal combustion engines (ICEs). Hydrogen is very attractive, thanks to the zero-carbon content and very high laminar flame speed, allowing for extending the lean burn limit. Other alternative fuels are methanol and ethanol. This work deals with the conversion of a small-sized passenger car powered by a three-cylinder spark ignition (SI) engine for the use of alternative fuels. In particular, the spark timing has been optimized to improve the fuel economy under every operating condition. The optimization procedure is based on the MATLAB/Simulink® R2024a-GT-Power co-simulation analysis and minimizes the fuel consumption by varying the spark timing independently for each cylinder. In particular, at full load, the algorithm reduces the spark timing only for the cylinder in which knock is detected, reducing fuel consumption by about 2% compared to the base calibration. This approach will be adopted in future activities to understand how the use of alternative fuels affects the ignition control strategy.\",\"PeriodicalId\":11557,\"journal\":{\"name\":\"Energies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/en17153695\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17153695","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Spark Timing Optimization through Co-Simulation Analysis in a Spark Ignition Engine
The automotive industry is experiencing radical changes under the pressure of institutions that are increasingly reducing the limits on CO2 and pollutant emissions from road vehicles powered by internal combustion engines (ICEs). A way to decarbonize the transport sector without disrupting current automotive production is the adoption of alternative fuels for internal combustion engines (ICEs). Hydrogen is very attractive, thanks to the zero-carbon content and very high laminar flame speed, allowing for extending the lean burn limit. Other alternative fuels are methanol and ethanol. This work deals with the conversion of a small-sized passenger car powered by a three-cylinder spark ignition (SI) engine for the use of alternative fuels. In particular, the spark timing has been optimized to improve the fuel economy under every operating condition. The optimization procedure is based on the MATLAB/Simulink® R2024a-GT-Power co-simulation analysis and minimizes the fuel consumption by varying the spark timing independently for each cylinder. In particular, at full load, the algorithm reduces the spark timing only for the cylinder in which knock is detected, reducing fuel consumption by about 2% compared to the base calibration. This approach will be adopted in future activities to understand how the use of alternative fuels affects the ignition control strategy.
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.